Menu
    //
    Gold(239)/ Hybrid(172)/ Green(114) OA
    /
    Major(466)/ minor(71) contribution
    Joint publication by X groups (116)

    2025

  1. (Bi)carbonate Precipitation and Gas Diffusion Electrode Stability Coexist during Pulsed Electrochemical CO2 Reduction

    P. Zeng, J. Drnec, F. Bernasconi, C. Battaglia, M. Mirolo, Q. Wang, A. Senocrate, N. PlainpanACS Energy Lett. 2025, 10, 635-638. DOI: 10.1021/acsenergylett.4c03042. Dataset: 10.5281/zenodo.14514653 (Zenodo).
  2. A Hazard-Based Approach Enables the Efficient Identification of Chemicals of Concern in Plastics

    K.J. Groh, Z. Wang, L. Zimmermann, L. Monclús, H.P.H. Arp, J.D. Hader, J. Muncke, M.E. Løseth, M. WagnerEnviron. Sci. Technol. 2025, 59, 16144. DOI: 10.1021/acs.est.5c02912.
  3. 2

    A Holistic Data-Driven Approach to Synthesis Predictions of Colloidal Nanocrystal Shapes

    B. Ranković, P. Schwaller, L. Zaza, R. BuonsantiJ. Am. Chem. Soc. 2025, 147, 6116. DOI: 10.1021/jacs.4c17283. Dataset: 10.5281/zenodo.14823228 (Zenodo).
  4. Accessing carbon, boron and germanium spiro stereocentres in a unified catalytic enantioselective approach

    N. Cramer, Y.-X. Cao, A.-S. Chauvin, L. Alama, S. TongNat. Catal. 2025, 8, 569-578. DOI: 10.1038/s41929-025-01352-3.
  5. Active Sites under Electronic Effect Are More Sensitive to Microenvironment in CO2 Electroreduction

    A. Loiudice, P. Rodlamul, P.P. Albertini, R. Buonsanti, N. Hicks, J. Calderon Mora, J. Leemans, M. GuskovaJ. Am. Chem. Soc. 2025, 147, 25517-25526. DOI: 10.1021/jacs.5c05697. Dataset: 10.5281/zenodo.15682133 (Zenodo).
  6. Additive-Enhanced PAX Polyesters for Industrial Processing and Increased Longevity

    M.A. Hedou, R. Marti, L.P. Manker, M.P. Shaver, J.S. LuterbacherACS Sustain. Chem. Eng. 2025, 13, 7710-7716. DOI: 10.1021/acssuschemeng.4c08640.
  7. Aldehyde-Stabilization Strategies for Building Biobased Consumer Products around Intact lignocellulosic Structures

    J.S. Luterbacher, S. Zheng, L.P. Manker, S. SunAcc. Chem. Res. 2025, 58, 877-892. DOI: 10.1021/acs.accounts.4c00819.
  8. 2

    Artificial Metalloenzymes with Two Catalytic Cofactors for Tandem Abiotic Transformations

    K. Lau, W. Wang, F. Pojer, K. Zhang, T.R. Ward, X. Hu, R. TachibanaAngew. Chem. Int. Ed. 2025, 64, e202422783. DOI: 10.1002/anie.202422783. Dataset: 10.5281/zenodo.14442893 (Zenodo).
  9. Assessing decarbonization strategies and industrial symbiosis in the chemical and waste‐to‐energy sector

    J. Huo, M. Schnyder, S. HellwegJ. Ind. Ecol. 2025, 29, 486-502. DOI: 10.1111/jiec.13616. Dataset: 10.5281/zenodo.15807563 (Zenodo).
  10. 2

    Best practices for multi-fidelity Bayesian optimization in materials and molecular research

    J.M. Hernández-Lobato, L. Roch, D. Pacheco Gutiérrez, J.S. Luterbacher, R. Barbano, P. Schwaller, V. Sabanza-GilNat. Comput. Sci. 2025, 5, 572-581. DOI: 10.1038/s43588-025-00822-9. Dataset: 10.5281/zenodo.15269205 (Zenodo).
  11. Bio‐Inspired Self‐Assembly of Enzyme‐Micelle Systems for Semi‐Artificial Photosynthesis

    A. Pannwitz, E. Reisner, S. Webb, Y. Liu, S.A. Bonke, R.R. Manuel, H. Song, S. Bonnet, A.M. Coito, L. Su, S. Rodríguez-Jiménez, I.A.C. Pereira, D. Kim, R.D. Milton, L. HammarströmAngew. Chem. Int. Ed. 2025, 64, e202424222. DOI: 10.1002/anie.202424222. Dataset: 10.17863/cam.115951 (Zenodo).
  12. Carbamate-bond breaking on bulk oxides realizes highly efficient polyurethane depolymerization

    J.-C. Schmidt, L. Piveteau, P.J. Dyson, P. Han, X. Wu, N. Yan, R.C. Turnell-RitsonNat. Commun. 2025, 16, 4322. DOI: 10.1038/s41467-025-59688-0. Dataset: 10.5281/zenodo.14762014 (Zenodo).
  13. Composing Unbalanced Flows for Flexible Docking and Relaxation

    V.R. Somnath, A. Krause, R. Barzilay, T. Jaakkola, G. Corso, N. GetzICLR 2025, 13.
  14. Computational analysis reveals temperature-induced stabilization of FAST-PETase

    S. Farnaud, P. Stockinger, R.M. Buller, C. NiederhauserComput. Struct. Biotechnol. J. 2025, 27, 969-977. DOI: 10.1016/j.csbj.2025.03.006.
  15. Computational tools for the prediction of site- and regioselectivity of organic reactions

    P.-O. Norrby, L.M. Sigmund, M. Kabeshov, K. Jorner, M. Assante, M.J. JohanssonChem. Sci. 2025, 16, 5383-5412. DOI: 10.1039/d5sc00541h.
  16. Controlling selectivity in the chemical looping oxidative dehydrogenation of propane through interface engineering

    A. Oing, C.R. Müller, F. DonatNat. Commun. 2025, 16, 5247. DOI: 10.1038/s41467-025-60428-7. Dataset: 10.5281/zenodo.15167212 (Zenodo).
  17. 2

    Coordination environments of Pt single-atom catalysts from NMR signatures

    S. Mitchell, D. Gioffrè, C. Copéret, A. Lesage, G. Pintacuda, J. Pérez-Ramírez, M.E. Usteri, A. Yakimov, J. Koppe, T. Vosegaard, A.J. PellNature 2025, 642, 613. DOI: 10.1038/s41586-025-09068-x. Dataset: 10.5281/zenodo.13381419 (Zenodo).
  18. 2

    DFT-metadynamics insights on the origin of the oxygen evolution kinetics at the (100)-WSe2 surface

    S. Luber, K. Sivula, F. CreazzoiScience 2025, 28, 112045. DOI: 10.1016/j.isci.2025.112045. Dataset: 10.17632/vx2g6p7w3j.1 (Mendeley Data).
  19. 3

    Descriptors of InZrOx vs ZnZrOx Catalysts for CO2 Hydrogenation to Methanol

    R. Erni, F. Krumeich, T. Zou, Y.-T. Chiang, H. Eliasson, T. Pinheiro Araújo, E. Tazedaki, J. Pérez-Ramírez, R.N. Grass, K.M. Engel, K. Raue, M. Agrachev, W.J. StarkAdv. Energy Mater. 2025, 15, 2404967. DOI: 10.1002/aenm.202404967. Dataset: 10.5281/zenodo.15208181 (Zenodo).
  20. 3

    Droplet‐Based EPR Spectroscopy for Real‐Time Monitoring of Liquid‐Phase Catalytic Reactions

    M. Agrachev, T. Moragues, J. Pérez-Ramírez, S. Mitchell, A. deMello, G. JeschkeSmall Methods 2025, 9, 2401771. DOI: 10.1002/smtd.202401771. Dataset: 10.5281/zenodo.13862981 (Zenodo).
  21. 2

    Enantioselective Cobalt(III)-Catalyzed [4 + 1] Annulation of Benzamides: Cyclopropenes as One-Carbon Synthons

    L.K. Verdhi, M.D. Wodrich, N. CramerJ. Am. Chem. Soc. 2025, 147, 15041-15049. DOI: 10.1021/jacs.4c16953.
  22. Enantioselective acyl-trifluoromethylation of olefins by bulky thiazolium carbene catalysis

    S. Jana, N. Cramer, M.D. WodrichNat. Commun. 2025, 16, 3293. DOI: 10.1038/s41467-025-58423-z.
  23. Engineering of MoSe2 and WSe2 Monolayers and Heterostructures by DFT-Molecular Dynamics Simulations

    F. CreazzoACS Appl. Mater. Interfaces 2025, 17, 39676–39693. DOI: 10.1021/acsami.5c07971. Dataset: 10.17632/g2xcwt3br4.1 (Mendeley Data).
  24. From Spectra to Structure: AI-Powered 31P NMR Interpretation

    N. Hartrampf, M. Alberts, T. LainoAnal. Chem. 2025, 97, 15736. DOI: 10.1021/acs.analchem.5c01460. Dataset: 10.5281/zenodo.14971858 (Zenodo).
  25. GDE Stability in CO2 Electroreduction to Formate: The Role of Ionomer Type and Loading

    A. Rieder, S. Vesztergom, G. Díaz-Sainz, L. Warmuth, A. Dutta, J.A. Abarca, P. Broekmann, A. IrabienACS Catal. 2025, 15, 8753-8767. DOI: 10.1021/acscatal.5c02052.
  26. Glucuronoyl esterases improve cellulose hydrolysis by lignocellulose degrading enzymes and enhance lignin extraction

    J.S. Luterbacher, J.W. Agger, P.A. Martins, C. BourmaudInt. J. Biol. Macromol. 2025, 314, 144218. DOI: 10.1016/j.ijbiomac.2025.144218.
  27. HMF electrooxidation on robust nickel-foam catalysts: effect of pH on electrolysis performance

    P. Broekmann, A. Dutta, S. Vesztergom, L. Gálvez‐Vázquez, Z. Szakály, A.V. Rudnev, R. ZauggJ. Catal. 2025, 450, 116321. DOI: 10.1016/j.jcat.2025.116321. Dataset: 10.5281/zenodo.14843555 (Zenodo).
  28. Harnessing Non-Thermal External Stimuli for Polymer Recycling

    M.-N. Antonopoulou, R. Whitfield, A. Anastasaki, G.R. Jones, H.S. Wang, N. De Alwis Watuthanthrige, V. LohmannMacromolecules 2025, 58, 2210-2223. DOI: 10.1021/acs.macromol.4c02690.
  29. Harnessing Synergies between Combinatorial Microfluidics and Machine Learning for Chemistry, Biology, and Fluidic Design

    A. deMello, S. Stavrakis, S. Damir, J. ProbstChem.: Methods 2025. DOI: 10.1002/cmtd.202500069.
  30. Influence of Hydrogen and Oxygen Impurities on Platinum-Catalyzed Acetylene Hydrochlorination

    V. Giulimondi, A.A. Alkhoori, J. Pérez-Ramírez, A. Ruiz-FerrandoACS Sustain. Chem. Eng. 2025, 13, 10765. DOI: 10.1021/acssuschemeng.5c04423.
  31. Integer linear programming for unsupervised training set selection in molecular machine learning

    R. Laplaza, J. Weinreich, K.R. Briling, C. Corminboeuf, P. van Gerwen, F. Eisenbrand, M. HaeberleMach. Learn.: Sci. Technol. 2025, 6, 025030. DOI: 10.1088/2632-2153/adcd38. Dataset: lcmd-epfl/ilpselect (GitHub).
  32. Integrating the Reverse Boudouard Reaction for a More Efficient Green Methanol Synthesis from CO2 and Renewable Energy

    J.D. Medrano‐García, G. Guillén‐Gosálbez, M.T. ChagasACS Sustain. Chem. Eng. 2025, 13, 7088-7097. DOI: 10.1021/acssuschemeng.5c01021.
  33. Ligand Design Enables the Palladium-Catalyzed Intermolecular Carbochlorocarbonylation of Alkynes and Cyclopentenone Formation

    A.F. Müller, B. Morandi, D. Svoboda, E.H. Denton, H.L. Schmitt, P. Müller, O. StepanovićJ. Am. Chem. Soc. 2025, 147, 25215-25223. DOI: 10.1021/jacs.5c01707. Dataset: 10.5281/zenodo.15630820 (Zenodo).
  34. 2

    Ligand Influence on the Performance of Cesium Lead Bromide Perovskite Quantum Dots in Photocatalytic C(sp3)–H Bromination Reactions

    W.M. Amberg, E. Staudinger, E.M. Carreira, Y. Sahin, D.N. Dirin, H. Lindner, S. Sabisch, L.G. Feld, Y. Li, M.V. Kovalenko, V. MoradJ. Am. Chem. Soc. 2025, 147, 8548. DOI: 10.1021/jacs.4c17013. Dataset: 10.5281/zenodo.15053611 (Zenodo).
  35. 2

    Ligand-Induced Activation of Single-Atom Palladium Heterogeneous Catalysts for Cross-Coupling Reactions

    O. Loveday, D.C. Stoian, D. Poier, J. Pérez-Ramírez, R. Marti, S. Mitchell, N. López, M.E. UsteriACS Nano 2025, 19, 1424-1432. DOI: 10.1021/acsnano.4c14131. Dataset: 10.5281/zenodo.13239364 (Zenodo).
  36. Low temperature thermal RAFT depolymerization: the effect of Z-group substituents on molecular weight control and yield

    M.L. Coote, N. De Alwis Watuthanthrige, A. Moskalenko, A. Anastasaki, A.A. Kroeger, N.P. TruongChem. Sci. 2025, 16, 3516-3522. DOI: 10.1039/d4sc07518h. Dataset: 10.1039/d4sc07518h (Zenodo).
  37. Low‐Temperature Depolymerization of Polymethacrylamides

    G.R. Jones, A.A. Kroeger, V. Lohmann, N.P. Truong, M.L. Coote, A. AnastasakiAngew. Chem. Int. Ed. 2025, 64, e202425575. DOI: 10.1002/anie.202425575.
  38. Machine learning-supported solvent design for lignin-first biorefineries and lignin upgrading

    A.O. Komarova, L. König-Mattern, S. Linke, K. Sundmacher, J.S. Luterbacher, L.K. Rihko-Struckmann, E.I. Sanchez MedinaChem. Eng. J. 2025, 495, 153524. DOI: 10.1016/j.cej.2024.153524. Dataset: 00.0000/0000 (GitHub).
  39. Mapping the chemical complexity of plastics

    L. Zimmermann, M. Wagner, M.E. Løseth, J. Muncke, A. Faltynkova, H.P.H. Arp, Z. Wang, L. Monclús, R. Wolf, K.J. GrohNature 2025, 643, 349-355. DOI: 10.1038/s41586-025-09184-8. Dataset: 10.5281/zenodo.10701705. (Zenodo).
  40. Modelling the chronopotentiometric response of constant current hydrogen evolution from dilute solutions of strong acids

    P. Moreno-García, P. Sólyom, V. Grozovski, Z. Szakály, Á. Kapdos, Á. Busai, P. Broekmann, S. Vesztergom, M. Ujvári, N. KovácsJ. Catal. 2025, 442, 115872. DOI: 10.1016/j.jcat.2024.115872. Dataset: 10.5281/zenodo.13829876 (Zenodo).
  41. Multilayered molybdenum carbonitride MXene: Reductive defunctionalization, thermal stability, and catalysis of ammonia synthesis and decomposition

    Z. Chen, E. Kountoupi, A. Garbujo, D. Piankova, M. Agrachev, C.R. Müller, P.M. Abdala, A. FedorovMater. Today Catal. 2025, 8, 100085. DOI: 10.1016/j.mtcata.2024.100085. Dataset: 10.1016/j.mtcata.2024.100085 (Zenodo).
  42. NMR Signatures of Transition-Metal Nuclei: From Local Environments and Electronic Structures to Reactivity Descriptors in Molecular and Heterogeneous Catalysis

    W. Cao, L. Lätsch, Z.J. Berkson, Y. Kakiuchi, C.J. Kaul, C. Copéret, D. Gioffrè, A. YakimovJACS Au 2025, 5, 2911-2931. DOI: 10.1021/jacsau.5c00061.
  43. Negative chemical data boosts language models in reaction outcome prediction

    A.C. Vaucher, M. Graziani, A. Toniato, T. LainoSci. Adv. 2025, 11, eadt5578. DOI: 10.1126/sciadv.adt5578.
  44. Onboard Carbon Capture for Circular Marine Fuels

    M.A. Charalambous, V. Kamm, G. Guillén‐Gosálbez, V. NegriACS Sustain. Chem. Eng. 2025, 13, 3919-3929. DOI: 10.1021/acssuschemeng.4c08354. Dataset: 10.5281/zenodo.14882866 (Zenodo).
  45. Overcoming copper stability challenges in CO2 electrolysis

    T. Burdyny, P.P. Albertini, J. Leemans, J. Kok, R. BuonsantiNat. Rev. Mater. 2025, 10, 550-563. DOI: 10.1038/s41578-025-00815-0.
  46. 2

    Photocatalyzed Azidofunctionalization of Alkenes via Radical‐Polar Crossover

    J. Waser, P. Palamini, A. SchoepferAngew. Chem. Int. Ed. 2025, 64, e202420455. DOI: 10.1002/anie.202420455. Dataset: 10.5281/zenodo.14277719 (Zenodo).
  47. Porous Organic Polymers Incorporating Shape‐Persistent Cyclobenzoin Macrocycles for Organic Solvent Separation

    T. Puangsamlee, A. Robles, A. Coskun, P. Iacomi, T. Ashirov, P.W. Fritz, C. Hewson, J. Lim, X. Wang, A. Crochet, O.Š. MiljanićAngew. Chem. Int. Ed. 2025, 64, e202423809. DOI: 10.1002/anie.202423809. Dataset: 10.5281/zenodo.14639311 (Zenodo).
  48. Predicting Reactivity with Machine Learning

    K. Jorner, L. Jacot‐DescombesN/A 2025, 157-194. DOI: 10.1002/9783527847068.ch07.
  49. Provable Maximum Entropy Manifold Exploration via Diffusion Models

    Y.-P. Hsieh, M. Vlastelica, N. He, Z. Shen, R. De Santi, A. KrauseICML 2025, 267.
  50. Real options analysis of decarbonization investments in the chemical industry

    J. Iversen, P. Tautorat, T.S. Schmidt, B. SteffenACS Appl. Energy Mater. 2025, 397, 126238. DOI: 10.1016/j.apenergy.2025.126238.
  51. 2

    Rekindling the use of acetylene as a chemical building block

    J. Pérez-Ramírez, A. Nabera, G. Guillén‐Gosálbez, Z. ZhangNat. Chem. Eng. 2025, 2, 99-109. DOI: 10.1038/s44286-025-00185-y.
  52. Repurposing haemoproteins for asymmetric metal-catalysed H atom transfer

    X. Zhang, T.R. Ward, D. Chen, M. AlvarezNature 2025, 644, 381. DOI: 10.1038/s41586-025-09308-0. Dataset: 10.5281/zenodo.15598763 (Zenodo).
  53. Rising greenhouse gas emissions embodied in the global bioeconomy supply chain

    S. Hellweg, C. Schwingshackl, L. Cabernard, S. PfisterCommun Earth Environ 2025, 6, 172. DOI: 10.1038/s43247-025-02144-0. Dataset: 10.5281/zenodo.14724086 (Zenodo).
  54. 3

    SPOCK Tool for Constructing Empirical Volcano Diagrams from Catalytic Data

    M. Suvarna, C. Corminboeuf, N. López, J. Pérez-Ramírez, K. Jorner, R. Laplaza, R. GrauxACS Catal. 2025, 15, 7296-7307. DOI: 10.1021/acscatal.5c00412. Dataset: 10.5281/zenodo.12804607 (Zenodo).
  55. Setting new benchmarks in AI-driven infrared structure elucidation

    M. Alberts, F. Zipoli, T. LainoDigit. Discov. 2025, 4, 1936-1943. DOI: 10.1039/d5dd00131e. Datasets: 10.5281/zenodo.7928396 (Zenodo), 10.5281/zenodo.11611177 (Zenodo).
  56. Structural Dynamics Behind the Formation of α′-Ni3Ga Alloy Nanoparticles from a Ni–Ga Phyllosilicate Dispersed on Silica Using X-ray Probes

    S. Checchia, P.M. Abdala, N.K. Zimmerli, F. Donat, A. Kierzkowska, D. Piankova, C.R. MüllerChem. Mater. 2025, 37, 5312-5324. DOI: 10.1021/acs.chemmater.5c01040. Dataset: 10.5281/zenodo.16900744 (Zenodo).
  57. Structure Prediction and Computational Protein Design for Efficient Biocatalysts and Bioactive Proteins

    R.M. Buller, U.T. Bornscheuer, J. Damborsky, D. HilvertAngew. Chem. Int. Ed. 2025, 64, e202421686. DOI: 10.1002/anie.202421686.
  58. Sustainability and efficiency assessment of routes for long-term energy storage in chemicals

    G. Guillén‐Gosálbez, P. Steiner, R. Calvo-Serrano, S.C. D'Angelo, M. Bregy, J.J. Gata-CuestaSustain. Prod. Consum. 2025, 54, 289-302. DOI: 10.1016/j.spc.2024.11.030. Dataset: 10.5281/zenodo.11382537 (Zenodo).
  59. Temperature-Dependent 207Pb Nuclear Magnetic Resonance Spectroscopy: A Spectroscopic Probe for the Local Electronic Structure of Lead Halide Perovskites

    M. Aebli, M. Wörle, V. Morad, M.V. Kovalenko, C. Copéret, S. Sabisch, L.G. Feld, S.C. Boehme, A. KanakChem. Mater. 2025, 37, 3443. DOI: 10.1021/acs.chemmater.5c00354.
  60. The Azidofunctionalization of Alkenes

    P. Palamini, J. WaserChemistryEurope 2025, 3, 2500140. DOI: 10.1002/ceur.202500140.
  61. 2

    The role of metal nanostructure in ceria-supported catalysts for ammonia oxidation to nitrous oxide

    Q. Yang, E.V. Kondratenko, M. Agrachev, T. Otroshchenko, F. Krumeich, I. Surin, V.A. Kondratenko, J. Pérez-RamírezChem Catal. 2025, 5, 101165. DOI: 10.1016/j.checat.2024.101165. Dataset: 10.5281/zenodo.12680158 (Zenodo).
  62. Towards Scalable Electroenzymatic Hydrogen Production with [FeFe]‐Hydrogenase

    S. Webb, R.D. MiltonChemElectroChem 2025, 12, e202400700. DOI: 10.1002/celc.202400700.
  63. 2

    Tracking life and death of carbon nitride supports in platinum-catalyzed vinyl chloride synthesis

    J.M. González-Acosta, F. Krumeich, N. López, V. Giulimondi, Y.-T. Chiang, J. Pérez-Ramírez, G. Jeschke, M. Agrachev, S. Kuzin, M. Vanni, A. Ruiz-Ferrando, F. BondinoNat. Commun. 2025, 16, 4842. DOI: 10.1038/s41467-025-60169-7. Dataset: 10.5281/zenodo.15853813 (Zenodo).
  64. Understanding the language of molecules: predicting pure component parameters for the PC-SAFT equation of state from SMILES

    P. Rehner, J. Schilling, A. Bardow, T. Esper, B. WinterDigit. Discov. 2025, 4, 1142-1157. DOI: 10.1039/d4dd00077c. Dataset: 10.48550/arxiv.2309.12404 (GitHub).
  65. 2

    Unveiling the Roles of Pt and CeO2 during Solvent-Free Amide Hydrogenation Utilizing Operando Photoelectron Photoionization Coincidence Spectroscopy

    J. Romano-deGea, Z. Zhang, R.C. Turnell-Ritson, X. Wu, J.-C. Schmidt, P. Hemberger, R.J. Somerville, P.J. Dyson, A. BodiACS Catal. 2025, 15, 6216-6225. DOI: 10.1021/acscatal.4c07955. Dataset: 10.5281/zenodo.16783065 (Zenodo).
  66. 2

    Visible light–triggered depolymerization of commercial polymethacrylates

    T.-L. Choi, G. Jeschke, A. Anastasaki, H.S. Wang, M. Agrachev, N.P. Truong, H. KimScience 2025, 387, 874. DOI: 10.1126/science.adr1637. Dataset: 10.5281/zenodo.16563221 (Zenodo).
  67. What Can be Learned From the Electrostatic Environments Within Nitrogenase Enzymes?

    D. Avagliano, O. Protsenko, T. Stuyver, T.R. WardChem. - Eur. J. 2025, 31, e202501616. DOI: 10.1002/chem.202501616. Dataset: 10.5281/zenodo.16616299 (Zenodo).
  68. 2024

  69. 2

    3DReact: Geometric deep learning for chemical reactions

    P. van Gerwen, A. Krause, V.R. Somnath, R. Laplaza, C. Bunne, C. Corminboeuf, K.R. BrilingJ. Chem. Inf. Model. 2024, 64, 5771. DOI: 10.1021/acs.jcim.4c00104. Dataset: 10.5281/zenodo.12744940 (Zenodo).
  70. 109Ag NMR chemical shift as a descriptor for Brønsted acidity from molecules to materials

    S.R. Docherty, A. Yakimov, C. Copéret, C. Hansen, W. CaoChem. Sci. 2024, 15, 3028. DOI: 10.1039/d3sc04067d.
  71. A Halted Photodeposition Technique Controls Co‐Catalyst Loading and Morphology on Organic Semiconductor Nanoparticles for Solar H2 Production

    V. Lutz‐Bueno, K. Sivula, C.R. Firth, V. Boureau, C. JeanguenatAdv. Energy Mater. 2024. DOI: 10.1002/aenm.202403372. Dataset: 10.5281/zenodo.16568450 (Zenodo).
  72. A Ni(0) methyl complex based on a bimetallic Ni–Ga framework

    A. Bütikofer, R. Wolf, S.A. Künzi, M.M. AndreyOrganometallics 2024, 43, 1276. DOI: 10.1021/acs.organomet.4c00111.
  73. A generalized model for estimating adsorption energies of single atoms on doped carbon materials

    N. López, M.G. Minotaki, A. Ruiz-Ferrando, A. Sabadell-Rendón, J. GeigerJ. Mater. Chem. A 2024, 12, 11049. DOI: 10.1039/d3ta05898k. Dataset: 10.19061/iochem-bd-1-329 (ioChem-BD).
  74. A genetic optimization strategy with generality in asymmetric organocatalysis as a primary target

    P. van Gerwen, S. Gallarati, L. Brey, A. Makaveev, R. Laplaza, C. CorminboeufChem. Sci. 2024, 15, 3640. DOI: 10.1039/d3sc06208b. Dataset: 10.24435/materialscloud:p4-gz (Materials Cloud).
  75. A human-machine interface for automatic exploration of chemical reaction networks

    M. Steiner, M. ReiherNat. Commun. 2024, 15, 3680. DOI: 10.1038/s41467-024-47997-9. Dataset: 10.5281/zenodo.10611686 (Zenodo).
  76. 2

    A metadynamics study of water oxidation reactions at (001)-WO3/liquid-water interface

    F. Creazzo, K. Sivula, R. Ketkaew, S. LuberChem Catal. 2024, 4, 101085. DOI: 10.1016/j.checat.2024.101085. Dataset: 10.1016/j.checat.2024.101085 (GitHub).
  77. A solution for 4-propylguaiacol hydrodeoxygenation without ring saturation

    P. Hemberger, J.S. Luterbacher, D.G. Vlachos, Z. Zhang, Q. Li, A. Bodi, X. Wu, C. BourmaudNat. Commun. 2024, 15. DOI: 10.1038/s41467-024-50724-z. Dataset: 10.5281/zenodo.12514988 (Zenodo).
  78. Accelerated chemical science with AI

    T. Vegge, S. Back, A. Aspuru-Guzik, A. Walsh, S. Kim, B. Grzybowski, P. Schwaller, O.A. von Lilienfeld, Y. Jung, K. Hippalgaonkar, G.H. Gu, J. Schrier, K. Tsuda, J. Hein, M. Ceriotti, R. Hormázabal, G. Gryn'ova, J. Noh, C. Park, W.Y. KimDigit. Discov. 2024, 3, 23. DOI: 10.1039/d3dd00213f.
  79. Active learning streamlines development of high performance catalysts for higher alcohol synthesis

    A.J. Martín, T. Zou, S.H. Chong, Y. Ge, M. SuvarnaNat. Commun. 2024, 15, 5844. DOI: 10.1038/s41467-024-50215-1. Dataset: 10.5281/zenodo.11639494 (Zenodo).
  80. An artificial nickel chlorinase based on the biotin–streptavidin technology

    K. Zhang, T.R. Ward, T. Maier, R.P. JakobChem. Commun. 2024, 60, 1944. DOI: 10.1039/d3cc05847f. Dataset: 10.5281/zenodo.12515594 (Zenodo).
  81. An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway

    A. Li, T. Maier, D. Chen, R.P. Jakob, R. Tachibana, A.A. Vorobieva, T.R. Ward, X. Zhang, Z. Zou, B.E. Correia, D.A. Graf, A. SteinNat. Chem. 2024, 16, in press. DOI: 10.1038/s41557-024-01562-5. Dataset: 10.5281/zenodo.12914139. (Zenodo).
  82. Artificial metalloenzyme‐catalyzed enantioselective carboamination of alkenes

    T.R. Ward, K. Yu, R. Tachibana, N.V. Igareta, K. Zhang, C. RumoChemCatChem 2024, 16, e202400365. DOI: 10.1002/cctc.202400365. Dataset: 10.5281/zenodo.12683879 (Zenodo).
  83. Arylative ring expansion of 3‐vinylazetidin‐3‐ols and 3‐vinyloxetan‐3‐ols to dihydrofurans by dual palladium and acid catalysis

    Q. Wang, J. Zhu, T. FujiiAngew. Chem. Int. Ed. 2024, 63, e202403484. DOI: 10.1002/anie.202403484.
  84. Atom-by-atom design of Cu/ZrOx clusters on MgO for CO2 hydrogenation using liquid-phase atomic layer deposition

    A. Bugaev, O.V. Safonova, J.S. Luterbacher, L. Savereide, S. Jin, B. Karakurt, S. Kim, L. Zhong, Y.-C. Lin, C. Kwon, V. BoureauNat. Catal. 2024, 7, 1199-1212. DOI: 10.1038/s41929-024-01236-y. Dataset: 10.5281/zenodo.12703871 (Zenodo).
  85. Augmented memory: Sample-efficient generative molecular design with reinforcement learning

    P. Schwaller, J. GuoJACS Au 2024, 4, 2160. DOI: 10.1021/jacsau.4c00066. Dataset: schwallergroup/augmented_memory (GitHub).
  86. Augmenting large language models with chemistry tools

    A. M. Bran, A.D. White, P. Schwaller, O.T. Schilter, S. Cox, C. BaldassariNat. Mach. Intell. 2024, 6, 525. DOI: 10.1038/s42256-024-00832-8. Dataset: 10.5281/zenodo.10884639 (Zenodo).
  87. Automated prediction of ground state spin for transition metal complexes

    C. Yuri, R. Laplaza, S. Vela, C. CorminboeufDigit. Discov. 2024, 3, 1638. DOI: 10.1039/d4dd00093e. Dataset: 10.24435/materialscloud:jx-a5 (Materials Cloud).
  88. 2

    Balancing computational chemistry's potential with its environmental impact

    P. Schwaller, O.T. Schilter, T. LainoGreen Chem. 2024, 26, 8669. DOI: 10.1039/d4gc01745e.
  89. Bayesian optimisation for additive screening and yield improvements – beyond one-hot encoding

    R.-R. Griffiths, P. Schwaller, B. Ranković, H.B. MossDigit. Discov. 2024, 3, 654. DOI: 10.1039/d3dd00096f.
  90. Beam enumeration: Probabilistic explainability for sample efficient self-conditioned molecular design

    P. Schwaller, J. GuoICLR 2024. DOI: 10.48550/arxiv.2309.13957. Dataset: schwallergroup/augmented_memory (GitHub).
  91. Benchmarking machine-readable vectors of chemical reactions on computed activation barriers

    Y. Calvino Alonso, C. Corminboeuf, M. Franke, K.R. Briling, P. van GerwenDigit. Discov. 2024, 3, 932. DOI: 10.1039/d3dd00175j. Dataset: 10.5281/zenodo.8309464 (Zenodo).
  92. 2

    Benzylic C(sp3)−H azidation: Copper vs iron catalysis

    A. Rentería‐Gómez, R. Simonet‐Davin, Q. Wang, J. Zhu, J. Waser, R.O. Torres‐Ochoa, P. PalaminiHelv. Chim. Acta 2024, 107, e202400004. DOI: 10.1002/hlca.202400004. Dataset: 10.5281/zenodo.10620281 (Zenodo).
  93. Biodiversity impacts of recent land-use change driven by increases in agri-food imports

    S. Hellweg, L. Cabernard, S. PfisterNat. Sustain. 2024, 7, 1512. DOI: 10.1038/s41893-024-01433-4. Datasets: 10.5281/zenodo.15805384 (Zenodo), 10.5281/zenodo.10354283 (Zenodo).
  94. 2

    CMD + V for chemistry: Image to chemical structure conversion directly done in the clipboard

    P. Schwaller, T. Laino, O.T. SchilterApplied AI Letters 2024, 5, e91. DOI: 10.1002/ail2.91. Dataset: o-schilter/clipboard-to-smiles-converter (GitHub).
  95. 2

    CO cofeeding affects product distribution in CH3Cl coupling over ZSM‐5 zeolite: Pressure twists the plot

    Z. Zhang, P. Hemberger, A. Bodi, J. Pérez-Ramírez, X. Wu, S. Mitchell, M. VanniAngew. Chem. 2024, 136, e202401060. DOI: 10.1002/ange.202401060. Dataset: 10.5281/zenodo.7916390 (Zenodo).
  96. Carbon–carbon bond cleavage for a lignin refinery

    R. Xiao, C. Liu, J. Xiao, M.D. Boot, Y. Wang, Z. Luo, A. Radu, J.S. Luterbacher, H. Zhang, E.J.M. Hensen, J. Behaghel de BuerenNat. Chem. Eng. 2024, 1, 61. DOI: 10.1038/s44286-023-00006-0.
  97. Catalysing (organo-)catalysis: Trends in the application of machine learning to enantioselective organocatalysis

    L. Schlosser, F. Glorius, S.P. Schmid, K. JornerBeilstein J. Org. Chem. 2024, 20, 2280-2304. DOI: 10.3762/bjoc.20.196.
  98. Chemoselective Pd-Based Dyotropic Rearrangement: Fluorocyclization and Regioselective Wacker Reaction of Homoallylic Amides

    C.-X. Liu, Q. Wang, J. ZhuJ. Am. Chem. Soc. 2024, 146, 30014-30019. DOI: 10.1021/jacs.4c13359.
  99. Chemoselectivity in Pd-Based Dyotropic Rearrangement: Development and Application in Total Synthesis of Pheromones

    J. Gong, Q. Wang, J. ZhuJ. Am. Chem. Soc. 2024, 147, 2077. DOI: 10.1021/jacs.4c15764.
  100. Circularity assessment in a chemical company. Evaluation of mass-based vs. impact-based circularity

    M. Wiprächtiger, S. HellwegResour., Conserv. Recycl. 2024, 204, 107458. DOI: 10.1016/j.resconrec.2024.107458.
  101. Colloidal atomic layer deposition on nanocrystals using ligand-modified precursors

    J. Leemans, K. Kumar, P.P. Albertini, R. Buonsanti, P.B. Green, C. Boulanger, O. Segura Lecina, P.B. Thompson, M.A. NewtonJ. Am. Chem. Soc. 2024, 146, 10708. DOI: 10.1021/jacs.4c00538.
  102. Combining Bayesian optimization and automation to simultaneously optimize reaction conditions and routes

    F. Zipoli, D.P. Gutierrez, T. Laino, L.M. Folkmann, A. García-Durán, A. Castrogiovanni, O.T. Schilter, L.M. RochChem. Sci. 2024, 15, 7732. DOI: 10.1039/d3sc05607d. Dataset: 10.5281/zenodo.10022311 (Zenodo).
  103. Computational prediction of complex cationic rearrangement outcomes

    T. Klucznik, B. Grzybowski, J. Mlynarski, L. Gadina, M.D. Burke, B. Mikulak-Klucznik, K. Tiefenbacher, S. Baś, S. Szymkuć, W. Beker, M. Moskal, L.-D. SyntrivanisNature 2024, 625, 508. DOI: 10.1038/s41586-023-06854-3. Dataset: nanotekton/ellipsoid_cavity (GitHub).
  104. Contrasting views of the electric double layer in electrochemical CO2 reduction: Continuum models vs molecular dynamics

    S. Haussener, E.F. JohnsonJ. Phys. Chem. C 2024, 128, 10450. DOI: 10.1021/acs.jpcc.4c03469.
  105. 2

    Cost-informed Bayesian reaction optimization

    R. Laplaza, C. Corminboeuf, J. Weinreich, J. Waser, A. SchoepferDigit. Discov. 2024, 3, 2289-2297. DOI: 10.1039/d4dd00225c. Dataset: lcmd-epfl/cibo (GitHub).
  106. Cross‐Coupling of Mo‐ and V‐Nitrogenases Permits Protein‐Mediated Protection from Oxygen Deactivation

    R.D. Milton, G.C. Danielle Sedoh, D. RatcliffChemBioChem 2024, 25, e202400585. DOI: 10.1002/cbic.202400585. Dataset: records/14245284 (Zenodo).
  107. Current developments in operando electron paramagnetic resonance spectroscopy

    J. Fischer, R. Tschaggelar, M. Agrachev, G. Jeschke, O. Oberhänsli, J. ForrerChimia 2024, 78, 326. DOI: 10.2533/chimia.2024.326.
  108. Cyclopentadienone iron complex-catalyzed hydrogenation of ketones: The influence of the charge-tag on catalytic performance

    A. Bütikofer, P. Chen, V. KesselringOrganometallics 2024, 43, 934. DOI: 10.1021/acs.organomet.3c00489. Dataset: entities/publication/5979936b-543e-45ba-937f-e495037f49d7 (Other).
  109. Defective zirconia promotes monometallic iron catalysts for higher alcohol synthesis

    Y. Ge, R. Pöttgen, T. Black, A.J. MartínChem Catal. 2024, 4, 101010. DOI: 10.1016/j.checat.2024.101010. Dataset: 10.5281/zenodo.10619310 (Zenodo).
  110. 2

    Design of technical ZnO/ZrO2 catalysts for CO2 hydrogenation to green methanol

    T. Pinheiro Araújo, J. Pérez-Ramírez, S. Mitchell, X. Jin, G. Jeschke, T. Zou, M. Agrachev, F. KrumeichJ. Catal. 2024, 430, 115344. DOI: 10.1016/j.jcat.2024.115344.
  111. Development of Lab-Scale Continuous Stirred-Tank Reactor as Flow Process Tool for Oxidation Reactions Using Molecular Oxygen

    D. Poier, U. Gnädinger, M. Dabros, C. Trombini, R. MartiOrganic Process Research & Development 2024, 28, 1860-1868. DOI: 10.1021/acs.oprd.3c00424.
  112. Directed Evolution of an Artificial Hydroxylase Based on a Thermostable Human Carbonic Anhydrase Protein

    T.R. Ward, T. Maier, I. Morita, E. Salvisberg, R.P. Jakob, K. Zhang, A. FaraoneACS Catal. 2024, 14, 17171-17179. DOI: 10.1021/acscatal.4c04163. Dataset: 10.5281/zenodo.14923327 (Zenodo).
  113. Disentangling the Pitfalls of Rotating Disk Electrode-Based OER Stability Assessment: Bubble Blockage or Substrate Passivation?

    A. Bornet, M. Arenz, A. Dutta, Y. Kong, M. Liechti, P. Moreno-García, P. Broekmann, S. VesztergomACS Catal. 2024, 14, 17331-17346. DOI: 10.1021/acscatal.4c05447. Dataset: 10.5281/zenodo.16792846 (Zenodo).
  114. 2

    Droplet‐based microfluidics reveals insights into cross‐coupling mechanisms over single‐atom heterogeneous catalysts

    G. Giannakakis, T. Huthwelker, A. deMello, A. Bugaev, S. Mitchell, A. Ruiz-Ferrando, J. Pérez-Ramírez, C.N. Borca, T. MoraguesAngew. Chem. Int. Ed. 2024, 63, e202401056. DOI: 10.1002/anie.202401056. Datasets: 10.5281/zenodo.8399256 (Zenodo), 10.19061/iochem-bd-1-291 (ioChem-BD).
  115. Editing tetrasubstituted carbon: Dual C–O bond functionalization of tertiary alcohols enabled by palladium-based dyotropic rearrangement

    T. Delcaillau, J. Zhu, B. Yang, Q. WangJ. Am. Chem. Soc. 2024, 146, 11061. DOI: 10.1021/jacs.4c02924.
  116. Effective engineering of a ketoreductase for the biocatalytic synthesis of an ipatasertib precursor

    D. Patsch, S. Reiter, D. Wetzl, B. Kuhn, S. Honda Malca, R.M. Buller, S.P. Hanlon, H. Iding, J. Meierhofer, M. Niklaus, N. DussCommun. Chem. 2024, 7, 46. DOI: 10.1038/s42004-024-01130-5. Dataset: ccbiozhaw/ssal-kred_evolution (GitHub).
  117. 2

    Electron paramagnetic resonance spectroscopy for the analysis of single-atom catalysts

    M. Agrachev, S. Mitchell, J. Pérez-Ramírez, I. Surin, V. Giulimondi, G. JeschkeChem Catal. 2024, 4, 101136. DOI: 10.1016/j.checat.2024.101136.
  118. Electron-transferring metalloenzymes and their potential biotechnological applications

    R.D. MiltonChimia 2024, 78, 13. DOI: 10.2533/chimia.2024.13.
  119. Electronic Properties of Single-Atom Metal Catalysts Supported on Nitrogen-Doped Carbon

    N. López, M.G. MinotakiJ. Phys. Chem. C 2024, 128, 13816. DOI: 10.1021/acs.jpcc.4c03232. Dataset: 10.19061/iochem-bd-1-329 (ioChem-BD).
  120. Electrostatic [FeFe]-hydrogenase–carbon nitride assemblies for efficient solar hydrogen production

    C. Pulignani, S.J. Cobb, Y. Liu, D. Kim, E. Reisner, R.D. Milton, S. Webb, S. Rodríguez-JiménezChem. Sci. 2024, 15, 6088. DOI: 10.1039/d4sc00640b. Dataset: 10.17863/cam.106936 (Zenodo).
  121. Embracing data science in catalysis research

    M. Suvarna, J. Pérez-RamírezNat. Catal. 2024, 7, 624. DOI: 10.1038/s41929-024-01150-3. Dataset: 10.5281/zenodo.10640876 (Zenodo).
  122. Enamine Synthesis via Regiocontrolled 6‐endodig and 5‐exodig Tethered Carboamination of Propargylic Alcohols

    L. Eichenberger, H. Solé‐Àvila, M. Puriņš, J. WaserAngew. Chem. Int. Ed. 2024, 63, e202411383. DOI: 10.1002/anie.202411383. Dataset: 10.5281/zenodo.13134128 (Zenodo).
  123. 2

    Enantiospecific Synthesis of Planar Chiral Rhodium and Iridium Cyclopentadienyl Complexes: Enabling Streamlined and Computer-Guided Access to Highly Selective Catalysts for Asymmetric C–H Functionalizations

    N. Cramer, R. Scopelliti, R. Laplaza, F. Fadaei‐Tirani, A. Laverny, C. Corminboeuf, Y.S. Ye, M.D. WodrichJ. Am. Chem. Soc. 2024, 146, 34786-34795. DOI: 10.1021/jacs.4c13279.
  124. Engineering frustrated Lewis pair active sites in porous organic scaffolds for catalytic CO2 hydrogenation

    S. Das, J.T. Blaskovits, C. Corminboeuf, R. LaplazaJ. Am. Chem. Soc. 2024, 146, 15806. DOI: 10.1021/jacs.4c01890. Dataset: 10.24435/materialscloud:90-b6 (Materials Cloud).
  125. 2

    Enhanced deep-learning model for carbon footprints of chemicals

    C. Oberschelp, E. Bradford, Z. Wang, S. Hellweg, D. ZhangACS Sustain. Chem. Eng. 2024, 12, 2700. DOI: 10.1021/acssuschemeng.3c07038. Dataset: 10.5281/zenodo.10410702 (Zenodo).
  126. 2

    Enhanced sequence-activity mapping and evolution of artificial metalloenzymes by active learning

    S. Panke, R. Tachibana, T. Vornholt, C. Schellhaas, T.R. Ward, M. Mutný, M. Jeschek, A. Krause, G.W. SchmidtACS Cent. Sci. 2024, 10, 1357. DOI: 10.1021/acscentsci.4c00258. Datasets: 10.1021/acscentsci.4c00258 (GitHub), 10.5281/zenodo.12578395 (Zenodo).
  127. 2

    Enriching productive mutational paths accelerates enzyme evolution

    T. Schwander, F. Peccati, P. Stockinger, S. Giger, M. Mutný, U.T. Bornscheuer, A. Krause, S. Hüppi, D. Patsch, L. Schelbert, M. Eichenberger, D. Schaub, R.M. Buller, G. Jiménez-Osés, D. Hilvert, M. VoßNat. Chem. Biol. 2024, 20, 1662-1669. DOI: 10.1038/s41589-024-01712-3. Dataset: 10.5281/zenodo.12756879 (Zenodo).
  128. 2

    Environmental Benefits of Circular Ethylene Production from Polymer Waste

    G. Guillén‐Gosálbez, C. Salah, V. Tulus, A. Bjørn, J. Pérez-Ramírez, I.-R. IstrateACS Sustain. Chem. Eng. 2024, 12, 13897-13906. DOI: 10.1021/acssuschemeng.4c04241.
  129. Excelzyme: A Swiss university-industry collaboration for accelerated biocatalyst development

    D. Milbredt, H. Iding, N. Duss, S. Honda Malca, P. Stockinger, R.M. BullerChimia 2024, 78, 108. DOI: 10.2533/chimia.2024.108.
  130. From organic fragments to photoswitchable catalysts: The OFF–ON structural repository for transferable kernel-based potentials

    S. Vela, C. Corminboeuf, R. Fabregat I De Aguilar-Amat, M.D. Wodrich, F. Celerse, V. JuráskováJ. Chem. Inf. Model. 2024, 64, 1201. DOI: 10.1021/acs.jcim.3c01953. Dataset: 10.24435/materialscloud:pz-2y (Materials Cloud).
  131. Fuelling the digital chemistry revolution with language models

    H. Wolf, P. Schwaller, A. Castrogiovanni, J. Geluykens, D. Probst, A.C. Vaucher, M. Manica, T. Gaudin, F. Zipoli, A. Toniato, T. LainoChimia 2024, 77, 484. DOI: 10.2533/chimia.2023.484.
  132. GAUCHE: A library for Gaussian processes in chemistry

    J. Moss, A. Bourached, S.C. Stanton, A.R. Jamasb, J. Schwartz, J. Tang, P. Schwaller, C. Guo, G. Tom, H. Moss, L. Klarner, A. Chan, A. Tripp, S. Frieder, R.-R. Griffiths, F. Strieth‐Kalthoff, J.W. Park, A. Ravuri, B. Cheng, A. Deshwal, J.P. Dürholt, Y. Du, A. Aspuru-Guzik, B. Ranković, G. KellNeurIPS 2024. DOI: 10.48550/arxiv.2212.04450. Dataset: leojklarner/gauche (GitHub).
  133. Graphene electrode for studying CO2 electroreduction nanocatalysts under realistic conditions in microcells

    S. Swathilakshmi, C. Chang, T.-H. Shen, V. Tileli, S. Toleukhanova, T. Bottinelli MontandonAdv. Mater. 2024, 36, 2311133. DOI: 10.1002/adma.202311133.
  134. Growing strings in a chemical reaction space for searching retrosynthesis pathways

    F. Zipoli, M. Manica, C. Baldassari, T. Laino, J. Bornnpj Comput. Mater. 2024, 10, 101. DOI: 10.1038/s41524-024-01290-x. Dataset: rxn4chemistry/rxn4chemistry (GitHub).
  135. Heron: Visualizing and Controlling Chemical Reaction Explorations and Networks

    C.H. Müller, J.P. Unsleber, M. Mörchen, M. Bensberg, T. Weymuth, K.-S. Csizi, M. Steiner, P.L. Türtscher, M. ReiherJ. Phys. Chem. A 2024, 128, 9028. DOI: 10.1021/acs.jpca.4c03936. Dataset: 10.5281/zenodo.11619716 (Zenodo).
  136. Heuristics and uncertainty quantification in rational and inverse compound and catalyst design

    T. Weymuth, M. ReiherElsevier eBooks 2024, 4, 485. DOI: 10.1016/b978-0-12-821978-2.00007-6.
  137. Hybrid oxide coatings generate stable Cu catalysts for CO2 electroreduction

    A. Loiudice, E. Oveisi, M.A. Newton, M. Wang, D.C. Stoian, R. Buonsanti, P.P. Albertini, P.B. GreenNat. Mater. 2024, 23, 680. DOI: 10.1038/s41563-024-01819-x. Dataset: 10.5281/zenodo.10524037 (Zenodo).
  138. 2

    ICP–MS Assisted EDX Tomography: A Robust Method for Studying Electrolyte Penetration Phenomena in Gas Diffusion Electrodes Applied to CO2 Electrolysis

    M. Mirolo, I. Zelocualtecatl Montiel, N. Kovács, A. Rieder, J. Lorenzetti, A. Iarchuk, F. Lorenzutti, S. Vesztergom, A. Dutta, P. Broekmann, J. Drnec, S. HaussenerSmall Methods 2024, 8. DOI: 10.1002/smtd.202400200. Dataset: 10.5281/zenodo.10050308 (Zenodo).
  139. Increasing Precursor Reactivity Enables Continuous Tunability of Copper Nanocrystals from Single-Crystalline to Twinned and Stacking Fault-Lined

    K. Kumar, J. Leemans, A. Loiudice, N. Bussell, D.C. Stoian, R. Buonsanti, C. Boulanger, L. Zaza, P.P. AlbertiniJ. Am. Chem. Soc. 2024, 146, 32766-32776. DOI: 10.1021/jacs.4c12905. Dataset: 10.5281/zenodo.13982409 (Zenodo).
  140. 2

    Increasing the Recycling of PVC Flooring Requires Phthalate Removal for Ensuring Consumers’ Safety: A Cross-Checked Substance Flow Analysis of Plasticizers for Switzerland

    H. Wiesinger, M. Klotz, Z. Wang, D. Laner, S. Hellweg, S. SchmidtEnviron. Sci. Technol. 2024, 58, 18686. DOI: 10.1021/acs.est.4c04164. Dataset: ecological-systems-design/sfa_flooring (GitHub).
  141. 2

    Integrating climate policies in the sustainability analysis of green chemicals

    J. Pérez-Ramírez, A.J. Martín, G. Guillén‐Gosálbez, A. Nabera, I.-R. IstrateGreen Chem. 2024, 26, 6461. DOI: 10.1039/d4gc00392f.
  142. Integrating emerging technologies deployed at scale within prospective life cycle assessments

    M.A. Charalambous, G. Guillén‐Gosálbez, V. Tulus, R. SacchiSustain. Prod. Consum. 2024, 50, 499-510. DOI: 10.1016/j.spc.2024.08.016. Dataset: 10.5281/zenodo.13745177 (Zenodo).
  143. Integrating genetic algorithms and language models for enhanced enzyme design

    Y.G. Nana Teukam, F. Zipoli, T. Laino, E. Criscuolo, F. Grisoni, M. ManicaBrief. Bioinform. 2024, 26, bbae675. DOI: 10.1093/bib/bbae675.
  144. 2

    Inverse Design of Singlet‐Fission Materials with Uncertainty‐Controlled Genetic Optimization

    R. Laplaza, J.T. Blaskovits, C. Corminboeuf, K. Jorner, L. SchaufelbergerAngew. Chem. Int. Ed. 2024, 64, e202415056. DOI: 10.1002/anie.202415056. Dataset: 10.24435/materialscloud:yn-vz (Materials Cloud).
  145. Is lithium from geothermal brines the sustainable solution for Li-ion batteries?

    S. Pfister, P. Bayer, V. Schenker, C. OberschelpRenewable Sustainable Energy Rev. 2024, 199, 114456. DOI: 10.1016/j.rser.2024.114456. Dataset: 10.5281/zenodo.13253266 (Zenodo).
  146. 2

    Language models can identify enzymatic binding sites in protein sequences

    T. Laino, Y.G. Nana Teukam, P. Schwaller, D. Probst, L. Kwate Dassi, M. ManicaComput. Struct. Biotechnol. J. 2024, 23, 1929. DOI: 10.1016/j.csbj.2024.04.012. Dataset: 10.5281/zenodo.7530179 (Zenodo).
  147. 2

    Legacy and emerging plasticizers and stabilizers in PVC floorings and implications for recycling

    A. Schönborn, C. Bleuler, H. Wiesinger, V. Christen, Z. Wang, M. Langer, P. Favreau, S. Hellweg, R. PasquettazEnviron. Sci. Technol. 2024, 58, 1894. DOI: 10.1021/acs.est.3c04851. Dataset: 10.17632/s4g2y7c7c7.2 (Mendeley Data).
  148. Leveraging infrared spectroscopy for automated structure elucidation

    A.C. Vaucher, T. Laino, M. AlbertsCommun. Chem. 2024, 7, 268. DOI: 10.1038/s42004-024-01341-w.
  149. Leveraging large language models for predictive chemistry

    P. Schwaller, A. Ortega-Guerrero, B. Smit, K.M. JablonkaNat. Mach. Intell. 2024, 6, 161. DOI: 10.1038/s42256-023-00788-1. Dataset: 10.5281/zenodo.7806672 (Zenodo).
  150. 2

    LitChemPlast: An Open Database of Chemicals Measured in Plastics

    X. Huang, Z. Wang, H. Wiesinger, S. Hellweg, A. Shalin, A. Siegrist, N. Plinke Environ. Sci. Technol. Lett. 2024, 11, 1147. DOI: 10.1021/acs.estlett.4c00355. Dataset: 10.5281/zenodo.13271346 (Zenodo).
  151. 3

    Low-nuclearity CuZn ensembles on ZnZrOx catalyze methanol synthesis from CO2

    R.N. Grass, J. Morales‐Vidal, J. Pérez-Ramírez, F. Krumeich, M. Agrachev, T. Zou, G. Giannakakis, N. López, Z. Ruiz-Bernal, P.O. Willi, P. Preikschas, W.J. Stark, S. Mitchell, T. Pinheiro AraújoNat. Commun. 2024, 15, 3101. DOI: 10.1038/s41467-024-47447-6. Datasets: philpreikschas/operando-ir (GitHub), 10.19061/iochem-bd-1-288 (ioChem-BD), 10.5281/zenodo.8309938 (Zenodo), 10.5281/zenodo.10818471 (Zenodo).
  152. Machine Learning Interatomic Potentials for Heterogeneous Catalysis

    D. Tang, R. Ketkaew, S. LuberChem. - Eur. J. 2024, 30, e202401148. DOI: 10.1002/chem.202401148.
  153. Machine learning-aided generative molecular design

    Y. Wang, J. Guo, A.R. Jamasb, P. Liò, T.L. Blundell, T. Fu, C. Duan, P. Schwaller, Y. Du, C. HarrisNat. Mach. Intell. 2024, 6, 589. DOI: 10.1038/s42256-024-00843-5.
  154. Magnetic resonance velocimetry of particle hydrodynamics in a three-dimensional draft tube spout-fluid bed

    B. Chen, A. Penn, J.P. Metzger, C. Guenthner, C.R. Müller, K.P. PruessmannChem. Eng. J. 2024, 485, 149678. DOI: 10.1016/j.cej.2024.149678. Dataset: 10.5281/zenodo.10677372 (Zenodo).
  155. Material Engineering Solutions toward Selective Redox Catalysts for Chemical-Looping-Based Olefin Production Schemes: A Review

    C.R. Müller, A. Oing, E. von Müller, F. DonatEnergy Fuels 2024, 38, 17326 - 17342. DOI: 10.1021/acs.energyfuels.4c03196.
  156. 2

    Mechanochemically-derived iron atoms on defective boron nitride for stable propylene production

    T. Otroshchenko, R. Erni, G.M. Beshara, I. Surin, E.V. Kondratenko, F. Krumeich, H. Eliasson, M. Agrachev, J. Pérez-RamírezEES Catal. 2024, 2, 1263-1276. DOI: 10.1039/d4ey00123k. Dataset: 10.5281/zenodo.11520887 (Zenodo).
  157. Merging the Reactivity of (Pseudo)cyclic Hypervalent Iodine Reagents and Carbenes or Carbenoids

    N.P. Ramirez, J. WaserSynthesis 2024, 56, 3815. DOI: 10.1055/a-2418-8285.
  158. Mesoporous Electrodes Enhance the Electrocatalytic Performance of [FeFe]‐Hydrogenase

    S. Webb, A. Veliju, U.-P. Apfel, T. Happe, P. Maroni, R.D. MiltonAngew. Chem. Int. Ed. 2024, 64, e202416658. DOI: 10.1002/anie.202416658. Dataset: 10.5281/zenodo.12683738 (Zenodo).
  159. Microkinetic molecular volcano plots for enhanced catalyst selectivity and activity predictions

    R. Laplaza, S. Das, T. Worakul, C. Corminboeuf, M.D. WodrichACS Catal. 2024, 14, 9829. DOI: 10.1021/acscatal.4c01175. Dataset: 10.5281/zenodo.12731465 (Zenodo).
  160. Mn-promoted MoS2 catalysts for CO2 hydrogenation: enhanced methanol selectivity due to MoS2/MnOx interfaces

    C. Rameshan, K. Föttinger, G.A.S. Alves, T. Wagner, R. Rameshan, G. Pacholik, S. PollittCatal. Sci. Technol. 2024, 14, 1138. DOI: 10.1039/d3cy01711g.
  161. Molecular hypergraph neural networks

    J. Chen, P. SchwallerJ. Chem. Phys. 2024, 160, 144307. DOI: 10.1063/5.0193557. Dataset: schwallergroup/mhnn (GitHub).
  162. Nanoscale chemical reaction exploration with a quantum magnifying glass

    K.-S. Csizi, M. SteinerNat. Commun. 2024, 15, 5320. DOI: 10.1038/s41467-024-49594-2. Dataset: 10.5281/zenodo.10697553 (Zenodo).
  163. Nature’s Toolbox for the Hydrolysis of Lactams and Cyclic Imides

    P. Stockinger, R.M. BullerACS Catal. 2024, 14, 16055-16073. DOI: 10.1021/acscatal.4c04474. Dataset: ccbiozhaw/cyclamidimid (GitHub).
  164. Observation of Three-Photon Cascaded Emission from Triexcitons in Giant CsPbBr3 Quantum Dots at Room Temperature

    I. Cherniukh, M. Kazes, D. Nakar, L.G. Feld, G. Rainò, M.I. Bodnarchuk, C. Zhu, D. Amgar, M.V. Kovalenko, D. OronNano Letters 2024, 24, 13185. DOI: 10.1021/acs.nanolett.4c03096.
  165. 2

    One-tenth of the EU’s sustainable biomethane coupled with carbon capture and storage can enable net-zero ammonia production

    J. Pérez-Ramírez, A. Nabera, I.-R. Istrate, G. Guillén‐GosálbezOne Earth 2024, 7, 2235-2249. DOI: 10.1016/j.oneear.2024.11.005. Dataset: 10.5281/zenodo.13900680 (Zenodo).
  166. Operando observation of (bi)carbonate precipitation during electrochemical CO2 reduction in strongly acidic electrolytes

    F. Bernasconi, A. Senocrate, M. Mirolo, P. Zeng, N. Plainpan, Q. Wang, C. BattagliaACS Catal. 2024, 14, 8232. DOI: 10.1021/acscatal.4c01884. Dataset: 10.5281/zenodo.11112946 (Zenodo).
  167. Overcoming the pitfalls of computing reaction selectivity from ensembles of transition states

    M.D. Wodrich, R. Laplaza, C. CorminboeufJ. Phys. Chem. Lett. 2024, 15, 7363. DOI: 10.1021/acs.jpclett.4c01657. Dataset: 10.5281/zenodo.12569950 (Zenodo).
  168. PULPO: A framework for efficient integration of life cycle inventory models into life cycle product optimization

    M. Graells, A. Espuña, F. Lechtenberg, G. Guillén‐Gosálbez, I.-R. Istrate, V. TulusJ. Ind. Ecol. 2024, 28, 1449-1463. DOI: 10.1111/jiec.13561. Dataset: 10.5281/zenodo.8410337 (Zenodo).
  169. Parallel experiments in electrochemical CO2 reduction enabled by standardized analytics

    C. Battaglia, N. Plainpan, F. Bernasconi, A. Senocrate, P. KrausNat. Catal. 2024, 7, 742. DOI: 10.1038/s41929-024-01172-x. Dataset: 10.5281/zenodo.8319625 (Zenodo).
  170. 2

    Performance polyamides built on a sustainable carbohydrate core

    R. Marti, Y. Kupper, L.P. Manker, M.P. Shaver, M.A. Hedou, C. Broggi, J.S. Luterbacher, K. Kortsen, H. Frauenrath, M.J. Jones, K. Puvanenthiran, V. MichaudNat. Sustain. 2024, 7, 640. DOI: 10.1038/s41893-024-01298-7. Dataset: 10.5281/zenodo.8321484 (Zenodo).
  171. Practical electrochemical hydrogenation of nitriles at the nickel foam cathode

    S. Rösler, B. Cezanne, M.d.J. Gálvez‐Vázquez, M. Klein, M.N. Perner, R. Narobe, P. Broekmann, S.R. Waldvogel, C. KuhwaldGreen Chem. 2024, 26, 10567-10574. DOI: 10.1039/d4gc03446e.
  172. Probing surface transformations of lanthanum nickelate electrocatalysts during oxygen evolution reaction

    A. Kierzkowska, T. Huthwelker, Y.-H. Wu, C.R. Müller, D.A. Kuznetsov, F. Donat, A. Wach, C.N. Borca, P.M. AbdalaJ. Am. Chem. Soc. 2024, 146, 11887. DOI: 10.1021/jacs.4c00863. Dataset: 10.5281/zenodo.12699529 (Zenodo).
  173. Quantification of native lignin structural features with gel‐phase 2D‐HSQC0 reveals lignin structural changes during extraction

    A. Bosch Rico, S. Bertella, J. Ralph, S.D. Karlen, J.S. LuterbacherAngew. Chem. 2024, 136, e202404442. DOI: 10.1002/ange.202404442. Dataset: 10.1002/ange.202404442 (GitHub).
  174. Quasi-operando transmission electron microscopy diagnostics for electrocatalytic processes in liquids

    V. TileliChimia 2024, 78, 339. DOI: 10.2533/chimia.2024.339.
  175. Quaternary Carbon Editing Enabled by Sequential Palladium Migration

    Q. Wang, T. Fujii, J. Zhu, H. WuJ. Am. Chem. Soc. 2024, 146, 21239. DOI: 10.1021/jacs.4c07706.
  176. RAFT polymerization of renewable monomers with dithiobenzoates: Effect of Z-group substituents and reaction conditions

    A. Anastasaki, K. Parkatzidis, S. Boner, N. De Alwis WatuthanthrigeEur. Polym. J. 2024, 205, 112721. DOI: 10.1016/j.eurpolymj.2023.112721. Dataset: 10.5281/zenodo.16099175 (Zenodo).
  177. Rate-determining step for electrochemical reduction of carbon dioxide into carbon monoxide at silver electrodes

    E. Boutin, S. HaussenerACS Catal. 2024, 14, 8437. DOI: 10.1021/acscatal.4c00192.
  178. 2

    Reaction-agnostic featurization of bidentate ligands for Bayesian ridge regression of enantioselectivity

    C. Corminboeuf, J. Waser, A. Schoepfer, R. Laplaza, M.D. WodrichACS Catal. 2024, 14, 9302. DOI: 10.1021/acscatal.4c02452. Dataset: 10.24435/materialscloud:c0-7z (Materials Cloud).
  179. 2

    Reactivity and Mechanism of Recoverable Pd1@C3N4 Single-Atom Catalyst in Buchwald–Hartwig Aminations

    K. Püntener, D. Faust Akl, A. Bugaev, N. López, G. Giannakakis, A. Ruiz-Ferrando, S. Fantasia, S. Mitchell, J. Pérez-Ramírez, M.E. UsteriACS Catal. 2024, 15, 284-295. DOI: 10.1021/acscatal.4c05134. Dataset: 10.5281/zenodo.10927465 (Zenodo).
  180. Reactivity switch of platinum with gallium: From reverse water gas shift to methanol synthesis

    J. Paterson, C. Copéret, J. Southouse, C. Ehinger, E. Brack, W. ZhouJ. Am. Chem. Soc. 2024, 146, 10806. DOI: 10.1021/jacs.4c01144. Dataset: 10.5281/zenodo.12165447 (Zenodo).
  181. 3

    Region-Specific Sourcing of Lignocellulose Residues as Renewable Feedstocks for a Net-Zero Chemical Industry

    Z. Wang, S. Hellweg, P. Lauri, G. Guillén‐Gosálbez, J. Huo, J.D. Medrano‐GarcíaEnviron. Sci. Technol. 2024, 58, 13748. DOI: 10.1021/acs.est.4c03005. Datasets: 10.5281/zenodo.12591834 (Zenodo), ecological-systems-design/biomass_sourcing (GitHub).
  182. Repurposing myoglobin into an abiological asymmetric ketoreductase

    R. Tachibana, Z. Zou, J. Stropp, T.R. Ward, D. Chen, X. Zhang, D. KloseChem 2024, 10, 2577-2589. DOI: 10.1016/j.chempr.2024.06.010. Dataset: 10.5281/zenodo.13771488 (Zenodo).
  183. 2

    Reversible transformation of sub-nanometer Ga-based clusters to isolated [4]Ga(4Si) sites creates active centers for propane dehydrogenation

    C. Zixuan, C. Copéret, D. Gajan, C.R. Müller, S.R. Docherty, P. Florian, P.M. Abdala, A.I. Serykh, A. Kierzkowska, A. Yakimov, A. FedorovCatal. Sci. Technol. 2024, 14, 379. DOI: 10.1039/d3cy01446k. Dataset: 10.1039/d3cy01446k (Zenodo).
  184. SCINE—Software for chemical interaction networks

    J.P. Unsleber, M. Eckhoff, T. Weymuth, C.H. Müller, V. Klasovita, K.-S. Csizi, F. Bosia, M. Steiner, S. Grimmel, J.-G. Sobez, P.L. Türtscher, M. Mörchen, M. Bensberg, M. ReiherJ. Chem. Phys. 2024, 160, 222501. DOI: 10.1063/5.0206974. Dataset: 10.5281/zenodo.11048377 (Zenodo).
  185. SOMOphilic alkyne vs radical-polar crossover approaches: The full story of the azido-alkynylation of alkenes

    J. BorrelBeilstein J. Org. Chem. 2024, 20, 701. DOI: 10.3762/bjoc.20.64.
  186. Self‐standing metal foam catalysts for cathodic electro‐organic synthesis

    M.d.J. Gálvez‐Vázquez, L. Gálvez‐Vázquez, P. Broekmann, P. Moreno-García, J. Winter, S.R. Waldvogel, T. PrenzelAdv. Mater. 2024, 36, 2307461. DOI: 10.1002/adma.202307461.
  187. Solid-state 183W NMR spectroscopy as a high-resolution probe of polyoxotungstate structures and dynamics

    M. Bernhardt, C. Copéret, Z.J. BerksonJ. Phys. Chem. Lett. 2024, 15, 1950. DOI: 10.1021/acs.jpclett.4c00033.
  188. Solution-based Cu+ transient species mediate the reconstruction of copper electrocatalysts for CO2 reduction

    N. López, P.P. Albertini, T. Priamushko, A. Loiudice, F. Dattila, S. Cherevko, J. Vavra, G.P.L. Ramona, A. Kormányos, R. BuonsantiNat. Catal. 2024, 7, 89. DOI: 10.1038/s41929-023-01070-8. Dataset: 10.5281/zenodo.8407241 (Zenodo).
  189. Standardizing chemical compounds with language models

    A.A. Debabeche, M.T. Cretu, A.C. Vaucher, A. Thakkar, T. Laino, A. ToniatoMach. Learn.: Sci. Technol. 2024, 4, 35014. DOI: 10.1088/2632-2153/ace878. Dataset: rxn4chemistry/rxn-standardization (GitHub).
  190. Structural comparison of (hyper‐)thermophilic nitrogenase reductases from three marine Methanococcales

    R.D. Milton, W. Gu, C. Cadoux, F. Murken, N. Maslać, T. Wagner, P. BolteThe FEBS journal 2024, 291, 3454. DOI: 10.1111/febs.17148.
  191. 2

    Structure and role of a Ga-promoter in Ni-based catalysts for the selective hydrogenation of CO2 to methanol

    S. Checchia, L. Rochlitz, N.K. Zimmerli, C. Copéret, P.M. Abdala, C.R. MüllerJACS Au 2024, 4, 237. DOI: 10.1021/jacsau.3c00677. Dataset: 10.5281/zenodo.12698197 (Zenodo).
  192. Surface Coordination Chemistry of Graphitic Carbon Nitride from Ag Molecular Probes

    E. Brack, S. Amanullah, W. Cao, C. Copéret, M. PlodinecAngew. Chem. Int. Ed. 2024, 64, e202417428. DOI: 10.1002/anie.202417428. Dataset: 10.5281/zenodo.14013480 (Zenodo).
  193. 3

    Sustainable One-Pot Production and Scale-Up of the New Platform Chemical Diformylxylose (DFX) from Agricultural Biomass

    Z.J. Li, F. Maréchal, J.D. Medrano‐García, G. Guillén‐Gosálbez, R. Marti, A.O. Komarova, J.S. Luterbacher, F. Neuenschwander, O. Erni, M.J. JonesACS Sustain. Chem. Eng. 2024, 12, 12879-12889. DOI: 10.1021/acssuschemeng.4c03799. Dataset: 00.0000/0000 (GitHub).
  194. Synthesis of High‐Surface‐Area Alumina using Carbon Templating and Liquid Phase Atomic Layer Deposition

    F. Talebkeikhah, Y.-C. Lin, J.S. LuterbacherAdv. Mater. Interfaces 2024, 11, 2400520. DOI: 10.1002/admi.202400520.
  195. Tandem catalysis enables chlorine-containing waste as chlorination reagents

    X. Wu, P.J. Dyson, M. LiuNat. Chem. 2024, 16, 700. DOI: 10.1038/s41557-024-01462-8. Dataset: 10.5281/zenodo.8271972 (Zenodo).
  196. Technology readiness and emerging prospects of coupled catalytic reactions for sustainable chemical value chains

    P. Preikschas, J. Pérez-RamírezChemSusChem 2024, online, e202400865. DOI: 10.1002/cssc.202400865.
  197. 2

    The environmental sustainability of digital content consumption

    L. Vanbever, M. Stucki, I.-R. Istrate, R.N. Grass, G. Guillén‐Gosálbez, V. TulusNat. Commun. 2024, 15, 3724. DOI: 10.1038/s41467-024-47621-w. Dataset: 10.5281/zenodo.7575568 (Zenodo).
  198. 2

    The future of chemical sciences is sustainable

    A.J. Martín, G. Guillén‐Gosálbez, S. Mitchell, J. Pérez-RamírezAngew. Chem. Int. Ed. 2024, 63, e202318676. DOI: 10.1002/anie.202318676.
  199. The impact of oxygen surface coverage and carbidic carbon on the activity and selectivity of two-dimensional molybdenum carbide (2D-Mo2C) in Fischer–Tropsch synthesis

    V.V. Ordomsky, C.R. Müller, C. Zixuan, A. Fedorov, A. Comas-Vives, E. Kountoupi, A.J. BarriosACS Catal. 2024, 14, 1834. DOI: 10.1021/acscatal.3c03956. Dataset: 10.5281/zenodo.12758711 (Zenodo).
  200. 2

    The need to integrate mass- and energy-based metrics with life cycle impacts for sustainable chemicals manufacture

    L.F. Santos, G. Guillén‐Gosálbez, J. Pérez-Ramírez, S. Mitchell, A.J. Martín, A. Nabera, E. LucasGreen Chem. 2024, 26, 9300. DOI: 10.1039/d4gc00394b.
  201. The role of chemical and solvent-based recycling within a sustainable circular economy for plastics

    S. Hellweg, C. Salah, C. Oberschelp, M. Klotz, L. SubalSci. Total Environ. 2024, 906, 167586. DOI: 10.1016/j.scitotenv.2023.167586. Dataset: ecological-systems-design/sustainable-circular-economy-for-plastics (GitHub).
  202. Tracking coordination environment and reaction intermediates in homogeneous and heterogeneous epoxidation catalysts via Ti L2,3-edge near-edge X-ray absorption fine structures

    A. Berkessel, C. Wartmann, J.-M. Neudörfl, J. Dreiser, A.A. Guda, V. Romankov, L. Lätsch, S.A. Guda, C. CopéretJ. Am. Chem. Soc. 2024, 146, 7456. DOI: 10.1021/jacs.3c12831. Dataset: 10.5281/zenodo.12165495 (Zenodo).
  203. Transcending scales in catalysis for sustainable development

    J. Pérez-Ramírez, S. Mitchell, A.J. MartínNat. Chem. Eng. 2024, 1, 13. DOI: 10.1038/s44286-023-00005-1.
  204. Transition Constrained Bayesian Optimization via Markov Decision Processes

    J.P. Folch, B. Shafei, R.M. Lee, A. Krause, W. Ormaniec, M. van der Wilk, C. Tsay, M. Mutný, R. MisenerNeurIPS 2024, 37.
  205. Uncovering atomic-scale dynamics in solid catalysts via X-ray-based methods

    P.M. Abdala, C.R. MüllerChimia 2024, 78, 297. DOI: 10.2533/chimia.2024.297.
  206. 2

    Understanding and Controlling Reactivity Patterns of Pd1@C3N4-Catalyzed Suzuki–Miyaura Couplings

    A. Bugaev, J. Pérez-Ramírez, M.E. Usteri, S. Mitchell, G. GiannakakisACS Catal. 2024, 14, 12635-12646. DOI: 10.1021/acscatal.4c03531. Dataset: 10.5281/zenodo.11073240 (Zenodo).
  207. Water structure in the first layers on TiO2: A key factor for boosting solar-driven water-splitting performances

    S. Luber, G. Centi, S. Abate, F. Creazzo, S. Perathoner, G. Cassone, C. Ampelli, R. Verduci, G. D’Angelo, F. TavellaJ. Am. Chem. Soc. 2024, 146, 18061. DOI: 10.17632/bvj5zc85d5.1.
  208. X-ray spectroscopy at the SuperXAS and Debye beamlines: From in situ to operando

    G. Smolentsev, O.V. Safonova, M. Nachtegaal, A. Bugaev, N.S. Genz, A.H. ClarkChimia 2024, 78, 304. DOI: 10.2533/chimia.2024.304.
  209. Xylose Acetals ‐ a New Class of Sustainable Solvents and Their Application in Enzymatic Polycondensation

    A.O. Komarova, L. König-Mattern, C.M. Warne, J. Stöckelmaier, H. Pétremand, A. Pellis, G.M. Guebitz, J.S. Luterbacher, C. OostenbrinkChemSusChem 2024, 18, e202401877. DOI: 10.1002/cssc.202401877.
  210. 2023

  211. ZrO2-Promoted Cu-Co, Cu-Fe and Co-Fe Catalysts for Higher Alcohol Synthesis

    J. Pérez-Ramírez, A.J. Martín, Y. GeACS Catal. 2023, 13, 9946-9959. DOI: 10.1021/acscatal.3c02534.
  212. A customized Bayesian algorithm to optimize enzyme-catalyzed reactions

    K. Zhang, Z. Zou, R. Tachibana, T.R. Ward, S. BurgenerACS Sustain. Chem. Eng. 2023, 11, 12336. DOI: 10.1021/acssuschemeng.3c02402. Dataset: 10.5281/zenodo.8305660 (Zenodo).
  213. A general and robust Ni-based nanocatalyst for selective hydrogenation reactions at low temperature and pressure

    S. Bartling, R.V. Jagadeesh, Y. Hu, H. Atia, H. Lund, A. van Muyden, M. Liu, M. BellerSci. Adv. 2023, 9, e202200626. DOI: 10.1126/sciadv.adj8225.
  214. 2

    Absolute environmental sustainability assessment of renewable dimethyl ether fuelled heavy-duty trucks

    M. Ryberg, M.A. Charalambous, J. Pérez-Ramírez, G. Guillén‐GosálbezSustainable Energy Fuels 2023, 7, 1930. DOI: 10.1039/D2SE01409B. Dataset: 10.5281/zenodo.8250270 (Zenodo).
  215. Absolute sustainability assessment of flue gas valorization to ammonia and synthetic natural gas

    J. Mache, G. Guillén‐Gosálbez, S.C. D'AngeloACS Sustain. Chem. Eng. 2023, 11, 17718. DOI: 10.1021/acssuschemeng.3c05246.
  216. Accelerating reaction network explorations with automated reaction template extraction and application

    J.P. UnsleberJ. Chem. Inf. Model. 2023, 63, 3392. DOI: 10.1021/acs.jcim.3c00102. Dataset: 10.5281/zenodo.7829302 (Zenodo).
  217. Activation in the rate of oxygen release of Sr0.8Ca0.2FeO3−δ through removal of secondary surface species with thermal treatment in a CO2-free atmosphere

    A.H. Bork, C.R. Müller, F. Donat, G. Luongo, Y.-H. Wu, P.M. AbdalaJ. Mater. Chem. A 2023, 11, 6530. DOI: 10.1039/d2ta09102j. Dataset: 10.1039/d2ta09102j (Zenodo).
  218. Active exploration via experiment design in Markov chains

    M. Mutný, T. Janik, A. KrauseFluid Phase Equilib. 2023, 206, 7349. DOI: 10.48550/arXiv.2206.14332.
  219. Acyl-ethynylbenziodoxolone (acyl-EBX): Access to ketene dithioarylacetals

    J. Borrel, M. Djaïd, P. Palamini, M. DelattreOrg. Lett. 2023, 25, 7535. DOI: 10.1021/acs.orglett.3c02869. Dataset: 10.5281/zenodo.8366598 (Zenodo).
  220. Advances in heterogeneous single-cluster catalysis

    X. Li, J. Pérez-Ramírez, J. Li, J. Lu, S. Mitchell, Y. FangNat. Rev. Chem. 2023, 7, 754. DOI: 10.1038/s41570-023-00540-8.
  221. Advances in noncanonical amino acid incorporation for enzyme engineering applications

    R.M. Buller, S. GigerChimia 2023, 77, 395. DOI: 10.2533/chimia.2023.395.
  222. 3

    Aiming for more sustainable cross-coupling chemistry by employing single-atom catalysis on scale

    S. Mitchell, J. Pérez-Ramírez, D. Poier, R. Marti, V. Tulus, G. Guillén‐GosálbezChimia 2023, 77, 127. DOI: 10.2533/chimia.2023.127.
  223. Aligned diffusion Schrödinger bridges

    C. Bunne, Y.-P. Hsieh, M. Pariset, V.R. Somnath, M.R. Martínez, A. KrauseUAI 2023, 216, 1985. DOI: 10.48550/arxiv.2302.11419. Dataset: vsomnath/aligned_diffusion_bridges (GitHub).
  224. Altering oxygen binding by redox-inactive metal substitution to control catalytic activity: oxygen reduction on manganese oxide nanoparticles as a model system

    H. Mehta, P.V. Kumar, J.A. Yuwono, Y.-H. Wu, F. Donat, A. Kierzkowska, D.A. Kuznetsov, C.R. Müller, E. Willinger, P.M. AbdalaAngew. Chem. Int. Ed. 2023, 62, e202217186. DOI: 10.1002/anie.202217186. Dataset: 10.1002/anie.202217186 (Zenodo).
  225. An artificial [Fe4S4]-containing metalloenzyme for the reduction of CO2 to hydrocarbons

    N.V. Igareta, R. Tachibana, T.R. Ward, M. Mukherjee, V. WaserJ. Am. Chem. Soc. 2023, 145, 14823. DOI: 10.1021/jacs.3c03546. Dataset: 10.5281/zenodo.8134490 (Zenodo).
  226. Aqueous stability and redox chemistry of synthetic [Fe4S4] clusters

    V. Waser, T.R. WardCoord. Chem. Rev. 2023, 495, 215377. DOI: 10.1016/j.ccr.2023.215377.
  227. Artificial intelligence for natural product drug discovery

    M.A. Skinnider, J. Durairaj, F. Huber, B. Zdrazil, L.M. Carroll, S.L. Robinson, A.S. Walker, A. Volkamer, N.I. Martin, H. Kim, R. Reher, S. Ferrinho, P. Guyomard, F. Grisoni, G.P. van Wezel, T. de Rond, P. Schwaller, H.U. Kim, D.A. van Bergeijk, R.G. Linington, A. Hofstetter, M. Gorostiola González, M. Segler, M.H. Medema, R.J.M. Goss, J.J.J. van der Hooft, B.R. Terlouw, K. Rajan, C.A. Dejong, E.R. Rees, K.R. Duncan, W. Jespers, M.A. Beniddir, F. Biermann, G.J.P. van Westen, M. Sorokina, A.K.H. Hirsch, M.W. Mullowney, J.A. van Santen, M.J. Balunas, E.L. Willighagen, S.S. Elsayed, N. Ziemert, C. Du, D. Meijer, K. Blin, N. Garg, W.H. Gerwick, E.J.N. Helfrich, T.F. Leao, J. Masschelein, S. Leopold-Messer, S.A. Kautsar, C.M. Clark, O.V. Kalinina, R. MüllerNat. Rev. Drug Discov. 2023, 22, 895. DOI: 10.1038/s41573-023-00774-7.
  228. Artificial metalloenzyme-catalyzed enantioselective amidation via nitrene insertion in unactivated C(sp3)–H bonds

    Z. Zou, T.R. Ward, J. Bechter, R. Tachibana, D. Chen, N.V. Igareta, K. YuJ. Am. Chem. Soc. 2023, 145, 16621. DOI: 10.1021/jacs.3c03969. Dataset: 10.5281/zenodo.8272174 (Zenodo).
  229. Automated multiscale simulation environment

    N. López, D. Curulla-Ferré, A. Sabadell-Rendón, S. Morandi, K. KaźmierczakDigit. Discov. 2023, 2, 1721. DOI: 10.1039/d3dd00163f. Datasets: handle/10/212800 (ioChem-BD), lopezgroup-iciq/amuse (GitHub).
  230. Azido-alkynylation of alkenes through radical-polar crossover

    J. Waser, J. BorrelChem. Sci. 2023, 14, 9452. DOI: 10.1039/d3sc03309k. Dataset: 10.5281/zenodo.8239023 (Zenodo).
  231. Bayesian optimization for chemical reactions

    P. Schwaller, B. Ranković, J. GuoChimia 2023, 77, 31. DOI: 10.2533/chimia.2023.31.
  232. Biomimetic tail-to-head terpene cyclizations using the resorcin[4]arene capsule catalyst

    K. Tiefenbacher, L.-D. Syntrivanis, I. CornuNat. Protoc. 2023, 19, 313. DOI: 10.1038/s41596-023-00919-3. Dataset: 10.5281/zenodo.10052551 (Zenodo).
  233. Boosting nitrate to ammonia electroconversion through hydrogen gas evolution over Cu-foam@mesh catalysts

    C. Sun, A. Dutta, Y. Wang, S. Vesztergom, P. Broekmann, A. IarchukACS Catal. 2023, 13, 8169. DOI: 10.1021/acscatal.3c00716. Dataset: 10.5281/zenodo.7446294 (Zenodo).
  234. Challenges and opportunities in engineering the electronic structure of single-atom catalysts

    J. Pérez-Ramírez, V. Giulimondi, S. MitchellACS Catal. 2023, 13, 2981. DOI: 10.1021/acscatal.2c05992.
  235. Chlorine-promoted copper catalysts for CO2 electroreduction into highly reduced products

    J. Pérez-Ramírez, A.J. Martín, E. Ibáñez-Alé, G. Zichittella, R. García‐Muelas, N. López, F.L.P. Veenstra, T. ZouCell Rep. Phys. Sci. 2023, 4, 101294. DOI: 10.1016/j.xcrp.2023.101294. Datasets: 10.5281/zenodo.7199360 (Zenodo), 10.19061/iochem-bd-1-258 (ioChem-BD).
  236. Colloidal CsPbX3 nanocrystals with thin metal oxide gel coatings

    C. Neff, D.N. Dirin, M. Aebli, M.V. Kovalenko, D. Guggisberg, D. Günther, S. YakuninChem. Mater. 2023, 35, 2827. DOI: 10.1021/acs.chemmater.2c03562. Dataset: 10.5281/zenodo.7645376 (Zenodo).
  237. Colloidal-ALD-grown metal oxide shells enable the synthesis of photoactive ligand/nanocrystal composite materials

    A. Loiudice, P.P. Albertini, O. Segura Lecina, P.B. Green, R. BuonsantiJ. Am. Chem. Soc. 2023, 145, 8189. DOI: 10.1021/jacs.3c01439. Dataset: 10.5281/zenodo.7707974 (Zenodo).
  238. 3

    Combining atomic layer deposition with surface organometallic chemistry to enhance atomic-scale interactions and improve the activity and selectivity of Cu–Zn/SiO2 catalysts for the hydrogenation of CO2 to methanol

    C. Copéret, N. Phongprueksathat, C. Zixuan, O.V. Safonova, H. Zhou, S.R. Docherty, A. Urakawa, I.P. Prosvirin, C.R. Müller, A. Fedorov, A.V. BukhtiyarovJACS Au 2023, 3, 2536. DOI: 10.1021/jacsau.3c00319. Dataset: 10.5281/zenodo.8420551 (Zenodo).
  239. Controlling the selectivity of the hydrogenolysis of polyamides catalysed by ceria-supported metal nanoparticles

    P.C.L. Delannoi, X. Wu, K.-H. Lin, W.-T. Lee, R.C. Turnell-RitsonNat. Commun. 2023, 14, 6524. DOI: 10.1038/s41467-023-42246-x. Dataset: 10.5281/zenodo.8356468 (Zenodo).
  240. Copper (I)-BOX catalyzed asymmetric 3-component reaction for the synthesis of trifluoromethylated propargylic ethers and anilines

    N.P. Ramirez, J. WaserAngew. Chem. Int. Ed. 2023, 62, e202305776. DOI: 10.1002/anie.202305776. Dataset: 10.5281/zenodo.7991566 (Zenodo).
  241. Copper-catalyzed benzylic functionalization of lignin-derived monomers

    U. Dhawa, X. Hu, A. Blumenstein, L. LavrencicChemSusChem 2023, 16, e202300703. DOI: 10.1002/cssc.202300703. Dataset: 10.5281/zenodo.8019944 (Zenodo).
  242. Current strategies for industrial plastic production from non-edible biomass

    S. Bertella, J. Behaghel de Bueren, L.P. Manker, M.J. Jones, J.S. LuterbacherCurr. Opin. Green Sustainable Chem. 2023, 41, 100780. DOI: 10.1016/j.cogsc.2023.100780.
  243. Cyclopentadienone triisocyanide iron complexes: general synthesis and crystal structures of tris(2,6-dimethylphenyl isocyanide)(η4-tetraphenylcyclopentadienone)iron and tris(naphthalen-2-yl isocyanide)(η4-tetraphenylcyclopentadienone)iron acetone hemisolvate

    A. Bütikofer, P. ChenActa Crystallogr. 2023, 79, 626. DOI: 10.1107/s205698902300498x. Dataset: 10.5281/zenodo.8095929 (Zenodo).
  244. Data-driven elucidation of flavor chemistry

    C. Gao, D. Zhang, P. Ma, P. Shi, X. Kou, H. Xing, Q. KeJ. Agric. Food Chem. 2023, 71, 6789. DOI: 10.1021/acs.jafc.3c00909. Dataset: 10.5281/zenodo.8027986 (Zenodo).
  245. Data‐driven discovery of organic electronic materials enabled by hybrid top‐down/bottom‐up design

    C. Corminboeuf, J.T. Blaskovits, S. Vela, R. LaplazaAdv. Mater. 2023, 36, 2305602. DOI: 10.1002/adma.202305602. Dataset: 10.24435/materialscloud:aa-2w (Materials Cloud).
  246. Deciphering the structural dynamics in molten salt-promoted MgO-based CO2 sorbents and their role in the CO2 uptake

    A. Kierzkowska, M. Rekhtina, M. Krödel, Y.-H. Wu, F. Donat, C.R. Müller, P.M. AbdalaSci. Adv. 2023, 9, eadg5690. DOI: 10.1126/sciadv.adg5690. Dataset: 10.5281/zenodo.7835859 (Zenodo).
  247. 3

    Design of flame-made ZnZrOX catalysts for sustainable methanol synthesis from CO2

    J. Pérez-Ramírez, T. Zou, P.O. Willi, M. Agrachev, R.N. Grass, J. Morales‐Vidal, T. Pinheiro Araújo, S. Mitchell, G. Jeschke, S. VerstraetenAdv. Energy Mater. 2023, 13, 2204122. DOI: 10.1002/aenm.202204122. Datasets: 10.5281/zenodo.7359881 (Zenodo), 10.19061/iochem-bd-1-259 (ioChem-BD).
  248. Designer phospholipid capping ligands for soft metal halide nanocrystals

    M. Aebli, Y. Sahin, V. Morad, S.C. Boehme, A. Baumketner, J. Affolter, A. Stelmakh, S. Bals, G. Rainò, C.J. Kaul, I. Cherniukh, M.V. Kovalenko, L.G. Feld, D.N. Dirin, M. Svyrydenko, N.J. SchrenkerNature 2023, 626, 542-548. DOI: 10.1038/s41586-023-06932-6. Dataset: 10.1038/s41586-023-06932-6 (Zenodo).
  249. Designing catalysts with deep generative models and computational data. A case study for Suzuki cross coupling reactions

    A.C. Vaucher, T. Laino, O.T. SchilterDigit. Discov. 2023, 2, 728. DOI: 10.1039/d2dd00125j. Dataset: 10.24435/materialscloud:2018.0014/v1 (Materials Cloud).
  250. Direct conversion of lignin to functionalized diaryl ethers via oxidative cross-coupling

    P.J. Dyson, M. LiuNat. Commun. 2023, 14, 2830. DOI: 10.1038/s41467-023-38534-1. Dataset: 10.5281/zenodo.8271972 (Zenodo).
  251. Direct electroreduction of carbonate to formate

    E. Ibáñez-Alé, B.S. Yeo, H. Ma, N. López, R. Ganganahalli, J. Pérez-RamírezJ. Am. Chem. Soc. 2023, 145, 24707. DOI: 10.1021/jacs.3c08079. Dataset: 10.19061/iochem-bd-1-265 (ioChem-BD).
  252. Dual nickel/photoredox-catalyzed asymmetric carbosulfonylation of alkenes

    C. Nevado, X. Du, I. Cheng-SánchezJ. Am. Chem. Soc. 2023, 145, 12532. DOI: 10.1021/jacs.3c00744.
  253. Dual photoredox and copper catalysis: enantioselective 1,2-amidocyanation of 1,3-dienes

    D. Forster, W. Guo, Q. Wang, J. ZhuACS Catal. 2023, 13, 7523. DOI: 10.1021/acscatal.3c01782. Dataset: 10.1021/acscatal.3c01782 (Zenodo).
  254. 2

    Economic and environmental competitiveness of ethane-based technologies for vinyl chloride synthesis

    G. Zichittella, V. Giulimondi, J. Pérez-Ramírez, J.D. Medrano‐García, A. CerutiACS Sustain. Chem. Eng. 2023, 11, 13062. DOI: 10.1021/acssuschemeng.3c03006.
  255. Economic and environmental performance of an integrated CO2 refinery

    J. Javaloyes-Antón, G. Guillén‐Gosálbez, J.A. Caballero, I. IoannouACS Sustain. Chem. Eng. 2023, 11, 1949. DOI: 10.1021/acssuschemeng.2c06724. Dataset: 10.5281/zenodo.8271809 (Zenodo).
  256. Effective perspiration is essential to uphold the stability of zero-gap MEA-based cathodes used in CO2 electrolysers

    H. Hu, A. Krause, P. Broekmann, Y. Kong, A.V. Rudnev, S. Vesztergom, Y.A. Hou, M. Liu, V. Kolivoška, R. ErniJ. Mater. Chem. A 2023, 11, 5083. DOI: 10.1039/D2TA06965B. Dataset: 10.5281/zenodo.7002917 (Zenodo).
  257. 2

    Eliminating flooding-related issues in electrochemical CO₂-to-CO converters: two lines of defense

    S. Vesztergom, C. Battaglia, R. Zboray, A. Senocrate, P. Broekmann, Y. Kong, V. Kolivoška, F. BernasconiChimia 2023, 77, 104. DOI: 10.2533/chimia.2023.104.
  258. 2

    Enabling direct photoelectrochemical H₂ production using alternative oxidation reactions on WO₃

    K. Sivula, N. Plainpan, R. Ketkaew, S. LuberChimia 2023, 77, 110. DOI: 10.2533/chimia.2023.110.
  259. Enantioselective total synthesis of (−)-artatrovirenol A

    R. Lavernhe, Q. Wang, P. Domke, J. ZhuJ. Am. Chem. Soc. 2023, 145, 24408. DOI: 10.1021/jacs.3c09683.
  260. 2

    Energy crisis in Europe enhances the sustainability of green chemicals

    A. Nabera, I.-R. Istrate, A.J. Martín, J. Pérez-RamírezGreen Chem. 2023, 25, 6603. DOI: 10.1039/D3GC01053H. Dataset: 10.5281/zenodo.8246472 (Zenodo).
  261. Enhancing C≥2 product selectivity in electrochemical CO2 reduction by controlling the microstructure of gas diffusion electrodes

    C. Battaglia, F. Bernasconi, P. Kraus, A. SenocrateEES Catal. 2023, 1, 1009. DOI: 10.1039/d3ey00140g. Dataset: 10.5281/zenodo.8211440 (Zenodo).
  262. Enhancing diversity in language based models for single-step retrosynthesis

    A.C. Vaucher, A. Toniato, P. Schwaller, T. LainoDigit. Discov. 2023, 2, 489. DOI: 10.1039/d2dd00110a. Dataset: 10.5281/zenodo.8271015 (Zenodo).
  263. 2

    Environmental and economic potential of decentralised electrocatalytic ammonia synthesis powered by solar energy

    S.C. D'Angelo, D. Freire Ordóñez, J. Pérez-Ramírez, A.J. Martín, S. CoboEnergy Environ. Sci. 2023, 16, 3314. DOI: 10.1039/D2EE02683J. Dataset: 10.5281/zenodo.7675514 (Zenodo).
  264. 2

    Environmental sustainability assessment of hydrogen from waste polymers

    C. Salah, S. Cobo, G. Guillén‐Gosálbez, J. Pérez-RamírezACS Sustain. Chem. Eng. 2023, 11, 3238. DOI: 10.1021/acssuschemeng.2c05729. Dataset: 10.5281/zenodo.8248120 (Zenodo).
  265. Environmental sustainability assessment of large-scale hydrogen production using prospective life cycle analysis

    G. Guillén‐Gosálbez, T. Weidner, V. TulusInt. J. Hydrogen Energy 2023, 48, 8310. DOI: 10.1016/j.ijhydene.2022.11.044. Dataset: 10.5281/zenodo.8246660 (Zenodo).
  266. 2

    Evidence of bifunctionality of carbons and metal atoms in catalyzed acetylene hydrochlorination

    N. López, F. Krumeich, V. Giulimondi, A.H. Clark, I. Surin, A. Ruiz-Ferrando, G. Giannakakis, J. Pérez-Ramírez, G. JeschkeNat. Commun. 2023, 14, 5557. DOI: 10.1038/s41467-023-41344-0. Datasets: 10.5281/zenodo.7855566 (Zenodo), 10.19061/iochem-bd-1-284 (ioChem-BD).
  267. 2

    Facile functionalization of carbon electrodes for efficient electroenzymatic hydrogen production

    P. Moreno-García, P. Broekmann, P. Maroni, S. Webb, A. Kulkarni, R.D. Milton, Y. LiuJACS Au 2023, 3, 124. DOI: 10.1021/jacsau.2c00551. Dataset: 10.5281/zenodo.6641837 (Zenodo).
  268. Fast customization of chemical language models to out-of-distribution data sets

    M.M. Lehmann, M. Stenta, P. Schwaller, T. Laino, A.C. Vaucher, A. ToniatoChem. Mater. 2023, 35, 8806. DOI: 10.1021/acs.chemmater.3c01406.
  269. Fast evaluation of the adsorption energy of organic molecules on metals via graph neural networks

    R.A. Vargas-Hernández, K. Jorner, A. Aspuru-Guzik, N. López, S.P. García Carrillo, S. MorandiNat. Comput. Sci. 2023, 3, 433. DOI: 10.1038/s43588-023-00437-y. Datasets: 10.5281/zenodo.10410522 (Zenodo), 10.19061/iochem-bd-1-257 (ioChem-BD), 10.5281/zenodo.7750394 (Zenodo).
  270. From nature to industry: Harnessing enzymes for biocatalysis

    J.C. Moore, R.J. Kazlauskas, R. Snajdrova, R.M. Buller, U.T. Bornscheuer, S. LutzScience 2023, 382, eadh8615. DOI: 10.1126/science.adh8615.
  271. Genetic algorithms for the discovery of homogeneous catalysts

    C. Corminboeuf, A. Schoepfer, P. van Gerwen, S. Gallarati, R. LaplazaChimia 2023, 77, 39. DOI: 10.2533/chimia.2023.39.
  272. Global site-specific health impacts of fossil energy, steel mills, oil refineries and cement plants

    S. Hellweg, C. Oberschelp, S. PfisterScientific reports 2023, 13, 13708. DOI: 10.1038/s41598-023-38075-z. Dataset: 10.5281/zenodo.12719622 (Zenodo).
  273. 2

    Group 10 metal allyl amidinates: A family of readily accessible and stable molecular precursors to generate supported nanoparticles

    M. Candrian, X. Zhou, C. Copéret, S.R. Docherty, S. Pollitt, C. EhingerJACS Au 2023, 3, 2314. DOI: 10.1021/jacsau.3c00334.
  274. Halogenases for the synthesis of small molecules

    J. Büchler, E. Hegarty, R.M. BullerCurr. Opin. Green Sustainable Chem. 2023, 41, 100784. DOI: 10.1016/j.cogsc.2023.100784.
  275. High-throughput ab initio reaction mechanism exploration in the cloud with automated multi-reference validation

    M. Troyer, B. Peng, L. Talirz, M. Reiher, T. Weymuth, A. Grofe, H. Liu, A. Panyala, K. Kowalski, C.J. Stein, D. Wecker, J.P. Unsleber, M. MörchenJ. Chem. Phys. 2023, 158, 84803. DOI: 10.1063/5.0136526. Dataset: 10.5281/zenodo.7568996 (Zenodo).
  276. High-throughput computational solvent screening for lignocellulosic biomass processing

    K. Sundmacher, J.S. Luterbacher, L. König-Mattern, A. Ghosh, S. Linke, L.K. Rihko-Struckmann, A.O. KomarovaChem. Eng. J. 2023, 452, 139476. DOI: 10.1016/j.cej.2022.139476. Dataset: 10.5281/zenodo.8119797 (Zenodo).
  277. Implications of Ga promotion and metal–oxide interface from tailored PtGa propane dehydrogenation catalysts supported on carbon

    C. Copéret, M.G. Willinger, M. Plodinec, E. BrackChem. Sci. 2023, 14, 12739. DOI: 10.1039/d3sc04711c. Dataset: 10.5281/zenodo.8402733 (Zenodo).
  278. Improving enzyme fitness with machine learning

    D. Patsch, R.M. BullerChimia 2023, 77, 116. DOI: 10.2533/chimia.2023.116.
  279. Integrated conversion of lignocellulosic biomass to bio‐based amphiphiles using a functionalization‐defunctionalization approach

    E. Amstad, J.S. Luterbacher, S. Bertella, S. Sun, M.J. Jones, G.R. Dick, G. De AngelisAngew. Chem. Int. Ed. 2023, 63, e202312823. DOI: 10.1002/anie.202312823. Dataset: 10.5281/zenodo.10161171 (Zenodo).
  280. Iron-catalyzed synthesis of α-azido α-amino esters via the alkylazidation of alkenes

    J. Waser, E.M.D. Allouche, P. PalaminiOrg. Lett. 2023, 25, 6791. DOI: 10.1021/acs.orglett.3c02153. Dataset: 10.5281/zenodo.8183015 (Zenodo).
  281. Kinetic network modeling of the catalytic upgrading of biomass’s acetate fraction to aromatics

    J.S. Luterbacher, J.H. Yeap, B. Rozmysłowicz, A.M.I. ElkhaiaryEnergy Fuels 2023, 37, 16172. DOI: 10.1021/acs.energyfuels.3c02300.
  282. 2

    Language models and protocol standardization guidelines for accelerating synthesis planning in heterogeneous catalysis

    A.C. Vaucher, S. Mitchell, J. Pérez-Ramírez, T. Laino, M. SuvarnaNat. Commun. 2023, 14, 7964. DOI: 10.1038/s41467-023-43836-5. Dataset: 10.5281/zenodo.10033139 (Zenodo).
  283. 2

    Lattice-stabilized chromium atoms on ceria for N2O synthesis

    H. Eliasson, F. Krumeich, J. Geiger, R. Erni, V.A. Kondratenko, E.V. Kondratenko, M. Agrachev, N. López, A. Zanina, G. Jeschke, I. Surin, J. Pérez-Ramírez, Q. YangACS Catal. 2023, 13, 15977. DOI: 10.1021/acscatal.3c04463.
  284. LibGENiE – A bioinformatic pipeline for the design of information-enriched enzyme libraries

    M. Eichenberger, R.M. Buller, U.T. Bornscheuer, M. Voß, D. PatschComput. Struct. Biotechnol. J. 2023, 21, 4488. DOI: 10.1016/j.csbj.2023.09.013. Dataset: 10.1016/j.csbj.2023.09.013 (Materials Cloud).
  285. Likelihood ratio confidence sets for sequential decision making

    A. Krause, M. Mutný, N. EmmeneggerNeurIPS 2023. DOI: 10.48550/arxiv.2311.04402.
  286. 2

    Low-valent manganese atoms stabilized on ceria for nitrous oxide synthesis

    V.A. Kondratenko, S. Damir, E.V. Kondratenko, F. Krumeich, N. López, S. Mitchell, M. Agrachev, J. Geiger, H. Eliasson, J. Pérez-Ramírez, I. Surin, R. Erni, Z. TangAdv. Mater. 2023, 35, 2211260. DOI: 10.1002/adma.202211260. Datasets: 10.5281/zenodo.7380563 (Zenodo), 10.19061/iochem-bd-1-262 (ioChem-BD).
  287. 2

    Manganese transfer hydrogenases based on the biotin‐streptavidin technology

    K. Lau, F. Pojer, W. Wang, R. Tachibana, Z. Zou, T.R. Ward, X. Zhang, D. Chen, X. HuAngew. Chem. Int. Ed. 2023, 62, e202311896. DOI: 10.1002/anie.202311896. Dataset: 10.5281/zenodo.8312812 (Zenodo).
  288. Microalgae biofuel for a heavy-duty transport sector within planetary boundaries

    C. Pozo, J. Gavaldà, R. Cabrera-Jiménez, L. Jiménez, V. Tulus, G. Guillén‐GosálbezACS Sustain. Chem. Eng. 2023, 11, 9359. DOI: 10.1021/acssuschemeng.3c00750. Dataset: 10.5281/zenodo.7850071 (Zenodo).
  289. Mixed‐metal ionothermal synthesis of metallophthalocyanine covalent organic frameworks for CO2 capture and conversion

    F. Gándara, A. Coskun, K.S. Song, L. Nga Poon, V. Mougel, P.W. Fritz, C.M. Caridade, D.F. AbbottAngew. Chem. Int. Ed. 2023, 62, e202309775. DOI: 10.1002/anie.202309775. Dataset: 10.5281/zenodo.8220146 (Zenodo).
  290. Morphology and transport characterization of catalyst layers for CO2 reduction

    S. Haussener, F. LorenzuttiJ. Electrochem. Soc. 2023, 170, 104507. DOI: 10.1149/1945-7111/acff1c.
  291. NMR-based quantification of liquid products in CO2 electroreduction on phosphate-derived nickel catalysts

    B.S. Yeo, P. Preikschas, A.J. Martín, J. Pérez-RamírezCommun. Chem. 2023, 6, 147. DOI: 10.1038/s42004-023-00948-9.
  292. 2

    Nature of GaOx shells grown on silica by atomic layer deposition

    M. Zubair, P.M. Abdala, N. Alaniva, A. Yakimov, N.K. Zimmerli, A. Fedorov, S. Björgvinsdóttir, E. Willinger, N.M. Bedford, C.R. Müller, P. Florian, A.B. Barnes, C. CopéretChem. Mater. 2023, 35, 7475. DOI: 10.1021/acs.chemmater.3c00923.
  293. 2

    Net-zero transition of the global chemical industry with CO2-feedstock by 2050: feasible yet challenging

    S. Hellweg, G. Guillén‐Gosálbez, Z. Wang, C. Oberschelp, J. HuoGreen Chem. 2023, 25, 415. DOI: 10.1039/D2GC03047K. Dataset: 10.5281/zenodo.8129254 (Zenodo).
  294. Nickel-catalyzed direct stereoselective α-allylation of ketones with non-conjugated dienes

    N. Cramer, Y.-X. Cao, M.D. WodrichNat. Commun. 2023, 14, 7640. DOI: 10.1038/s41467-023-43197-z.
  295. Nickel-catalyzed enantioselective electrochemical reductive cross-coupling of aryl aziridines with alkenyl bromides

    C. Nevado, S. Cuesta-Galisteo, X. HuJ. Am. Chem. Soc. 2023, 145, 6270. DOI: 10.1021/jacs.2c12869.
  296. Nitrogen fixation and hydrogen evolution by sterically encumbered Mo-nitrogenase

    D. Ratcliff, T. Wagner, N. Maslać, I. Tsakoumagkos, C. Cadoux, R.D. Milton, S. Hoogendoorn, W. GuJACS Au 2023, 3, 1521. DOI: 10.1021/jacsau.3c00165. Dataset: 10.5281/zenodo.6865680 (Zenodo).
  297. ODEFormer: Symbolic regression of dynamical systems with transformers

    N. Kilbertus, A. Mathis, P. Schwaller, S. Becker, S. d’AscoliICLR 2023. DOI: 10.48550/arxiv.2310.05573. Dataset: sdascoli/odeformer (GitHub).
  298. Of glasses and crystals: Mitigating the deactivation of CaO-based CO2 sorbents through calcium aluminosilicates

    C.R. Müller, C. Leroy, S.M. Kim, M.A. Naeem, Y.-H. Wu, A. Armutlulu, A. Fedorov, A. Kierzkowska, P. FlorianJACS Au 2023, 3, 3111. DOI: 10.1021/jacsau.3c00475. Dataset: 10.5281/zenodo.12721657 (Zenodo).
  299. On the Importance of Benchmarking the Gas‐Phase Pyrolysis Reaction in the Oxidative Dehydrogenation of Propane

    A. Oing, G. Luongo, A. Fedorov, F. Donat, M. Nadjafi, M. Bachl, P.M. Abdala, Y. Cui, C.R. MüllerChemCatChem 2023, 15, e202200694. DOI: 10.1002/cctc.202200694.
  300. One-pot synthesis of functionalized bis(trifluoromethylated)benziodoxoles from iodine(i) precursors

    N.P. Ramirez, J. Waser, T.M. MilzarekChem. Commun. 2023, 59, 12637. DOI: 10.1039/d3cc04525k. Dataset: 10.5281/zenodo.8390247 (Zenodo).
  301. Operando photoelectron photoion coincidence spectroscopy to detect short-lived intermediates in catalysis

    Z. Zhang, A. Bodi, J.A. Van Bokhoven, J. Pérez-Ramírez, P. HembergerChimia 2023, 77, 132. DOI: 10.2533/chimia.2023.132.
  302. Pathways to enhance electrochemical CO2 reduction identified through direct pore-level modeling

    E.F. Johnson, E. Boutin, S. HaussenerEES Catal. 2023, 1, 704. DOI: 10.1039/D3EY00122A. Dataset: 10.5281/zenodo.8167572 (Zenodo).
  303. Photoion mass-selected threshold photoelectron spectroscopy to detect reactive intermediates in catalysis: From instrumentation and examples to peculiarities and a database

    P. Hemberger, Z. Pan, Z. Zhang, X. Wu, K. Kanayama, A. BodiJ. Phys. Chem. C 2023, 127, 16751. DOI: 10.1021/acs.jpcc.3c03120.
  304. Planetary boundaries assessment of deep decarbonisation options for building heating in the European Union

    G. Guillén‐Gosálbez, T. WeidnerEnergy Convers. Manage. 2023, 278, 116602. DOI: 10.1016/j.enconman.2022.116602. Dataset: 10.5281/zenodo.8246442 (Zenodo).
  305. Porous organic polymers for selective palladium recovery and heterogeneous catalysis

    A. Coskun, K.S. SongChimia 2023, 77, 122. DOI: 10.2533/chimia.2023.122.
  306. Quantitative description of metal center organization and interactions in single‐atom catalysts

    N. López, J. Heras‐Domingo, A. Ruiz-Ferrando, R. Graux, J. Pérez-Ramírez, V.G. Abalos, D. Garcia-Gasulla, K. Rossi, J. LuAdv. Mater. 2023, 36, 2307991. DOI: 10.1002/adma.202307991. Datasets: 10.19061/iochem-bd-1-282 (ioChem-BD), 10.5281/zenodo.8095963 (Zenodo).
  307. 2

    Quantum chemical data generation as fill-in for reliability enhancement of machine-learning reaction and retrosynthesis planning

    M. Reiher, A. Toniato, T. Laino, J.P. Unsleber, D. Probst, A.C. VaucherDigit. Discov. 2023, 2, 663. DOI: 10.1039/d3dd00006k. Dataset: 10.5281/zenodo.7656888 (Zenodo).
  308. 3

    Reaction environment design for multigram synthesis via Sonogashira coupling over heterogeneous palladium single-atom catalysts

    G. Giannakakis, D. Faust Akl, S. Mitchell, J. Pérez-Ramírez, A.R. Machado, G. Guillén‐Gosálbez, R. Marti, D. Poier, E. LucasACS Sustain. Chem. Eng. 2023, 11, 16935. DOI: 10.1021/acssuschemeng.3c04183. Dataset: 10.5281/zenodo.8089735 (Zenodo).
  309. 4

    Reaction-induced formation of stable mononuclear Cu(I)Cl species on carbon for low-footprint vinyl chloride production

    G. Jeschke, J.D. Medrano‐García, J. Pérez-Ramírez, G. Guillén‐Gosálbez, A. Ruiz-Ferrando, S. Mitchell, D. Faust Akl, G. Giannakakis, M. Agrachev, O.V. SafonovaAdv. Mater. 2023, 35, 2211464. DOI: 10.1002/adma.202211464. Dataset: 10.5281/zenodo.7380519 (Zenodo).
  310. Reaction‐Induced Metal‐Metal Oxide Interactions in Pd‐In2O3/ZrO2 Catalysts Drive Selective and Stable CO2 Hydrogenation to Methanol

    R. Erni, N. López, H. Eliasson, J. Morales‐Vidal, S. Mitchell, C. Mondelli, G. Giannakakis, J.A. Stewart, J. Pérez-Ramírez, T. Pinheiro AraújoAngew. Chem. Int. Ed. 2023, 62, e202306563. DOI: 10.1002/anie.202306563. Dataset: 10.5281/zenodo.7916389 (Zenodo).
  311. Reply to comment on ‘Physics-based representations for machine learning properties of chemical reactions’

    R. Laplaza, P. van Gerwen, M.D. Wodrich, C. CorminboeufMach. Learn.: Sci. Technol. 2023, 4, 48002. DOI: 10.1088/2632-2153/acee43. Dataset: lcmd-epfl/reply-physics-reactions (GitHub).
  312. 2

    Role and dynamics of transition metal carbides in methane coupling

    L. Lätsch, K.M. Engel, A.D. Horton, P.-A. Payard, A.P. van Bavel, W.J. Stark, S. Zhang, C. Copéret, Q. PessemesseChem. Sci. 2023, 14, 5899. DOI: 10.1039/D3SC01054F.
  313. SPT-NRTL: a physics-guided machine learning model to predict thermodynamically consistent activity coefficient

    A. Bardow, T. Esper, J. Schilling, C. Winter, B. WinterFluid Phase Equilib. 2023, 568, 113731. DOI: 10.1016/j.fluid.2023.113731.
  314. 2

    Selectivity control in palladium-catalyzed CH2Br2 hydrodebromination on carbon-based materials by nuclearity and support engineering

    A.H. Clark, V. Giulimondi, M. Vanni, N. López, S. Mitchell, A. Ruiz-Ferrando, J. Pérez-Ramírez, F. KrumeichACS Catal. 2023, 13, 5828. DOI: 10.1021/acscatal.2c06394. Datasets: 10.5281/zenodo.7456944 (Zenodo), 10.19061/iochem-bd-1-261 (ioChem-BD).
  315. 2

    Structure of Na Species in promoted CaO-based sorbents and their effect on the rate and extent of the CO2 uptake

    C.R. Müller, L. Abduly, C. Copéret, P.M. Abdala, M. Krödel, M. Nadjafi, A. Yakimov, A.H. Bork, A. Kierzkowska, F. DonatAdv. Funct. Mater. 2023, 33, 2302916. DOI: 10.1002/adfm.202302916. Dataset: 10.1002/adfm.202302916 (Zenodo).
  316. Supramolecular capsule catalysis enables the exploration of terpenoid chemical space untapped by Nature

    K. Tiefenbacher, D. Schmid, I. NémethováAngew. Chem. Int. Ed. 2023, 62, e202218625. DOI: 10.1002/anie.202218625. Dataset: 10.1002/anie.202218625 (Zenodo).
  317. Surface charge boundary condition often misused in CO2 reduction models

    E.F. Johnson, E. Boutin, S. HaussenerJ. Phys. Chem. C 2023, 127, 18784. DOI: 10.1021/acs.jpcc.3c05364.
  318. Surface chemistry dictates the enhancement of luminescence and stability of InP QDs upon c-ALD ZnO hybrid shell growth

    M.A. Newton, O. Segura Lecina, P.P. Albertini, P.B. Green, A. Loiudice, J. Leemans, D.C. Stoian, R. Buonsanti, K.P. MarshallJACS Au 2023, 3, 3066. DOI: 10.1021/jacsau.3c00457. Dataset: 10.5281/zenodo.8377955 (Zenodo).
  319. Sustainable materials: Production methods and end-of-life strategies

    J.S. Luterbacher, A. Ghosh, R. Buser, F. HéroguelChimia 2023, 77, 848. DOI: 10.2533/chimia.2023.848.
  320. Synthesis of propargyl silanes from terminal alkynes via a migratory Sonogashira reaction

    L. Eichenberger, M. Puriņš, J. WaserChem. Commun. 2023, 59, 7931. DOI: 10.1039/D3CC01847D. Dataset: 10.5281/zenodo.7982434 (Zenodo).
  321. The catalytic role of glutathione transferases in heterologous anthocyanin biosynthesis

    T. Schwander, M. Eichenberger, S. Hüppi, G. Jiménez-Osés, F. Peccati, M. Naesby, R.M. Buller, J. KreuzerNat. Catal. 2023, 6, 927. DOI: 10.1038/s41929-023-01018-y. Dataset: 10.5281/zenodo.8069429 (Zenodo).
  322. The mononuclear metal-binding site of Mo-nitrogenase is not required for activity

    T. Wagner, C. Cadoux, N. Maslać, R.D. Milton, W. Gu, D. Ratcliff, L. Di LuzioJACS Au 2023, 3, 2993. DOI: 10.1021/jacsau.3c00567. Dataset: 10.5281/zenodo.7973625 (Zenodo).
  323. The promotional role of Mn in CO2 hydrogenation over Rh-based catalysts from a surface organometallic chemistry approach

    C. Ehinger, X. Zhou, C. Copéret, S.R. Docherty, W. ZhouChem. Sci. 2023, 14, 5379. DOI: 10.1039/D3SC01163A. Dataset: 10.5281/zenodo.8276926 (Zenodo).
  324. The role of ionomers in the electrolyte management of zero-gap MEA-based CO2 electrolysers: a Fumion vs. Nafion comparison

    V. Kolivoška, Y.A. Hou, M. Liu, A.V. Rudnev, S. Vesztergom, Y. Kong, I. Montiel, H. Hu, R. Erni, P. BroekmannAppl. Catal. 2023, 335, 122885. DOI: 10.1016/j.apcatb.2023.122885. Dataset: 10.5281/zenodo.7117080 (Zenodo).
  325. Theory-guided development of homogeneous catalysts for the reduction of CO2 to formate, formaldehyde, and methanol derivatives

    C. Werlé, W. Leitner, H.H. Cramer, C. Corminboeuf, M.D. Wodrich, S. DasChem. Sci. 2023, 14, 2799. DOI: 10.1039/D2SC06793E. Dataset: 10.5282/zenodo.8229079 (Zenodo).
  326. 3

    Toward in silico catalyst optimization

    M. Reiher, M.D. Wodrich, C. Corminboeuf, R. Laplaza, N. CramerChimia 2023, 77, 139. DOI: 10.2533/chimia.2023.139.
  327. Towards circular plastics within planetary boundaries

    C. Zibunas, M. Bachmann, J. Hartmann, V. Tulus, A. Bardow, G. Guillén‐Gosálbez, S. SuhNat. Sustain. 2023, 6, 599. DOI: 10.1038/s41893-022-01054-9. Datasets: 10.5281/zenodo.6881557 (Zenodo), 10.5281/zenodo.5118762 (Zenodo).
  328. 2

    Trade-offs between Sustainable Development Goals in carbon capture and utilisation

    G. Guillén‐Gosálbez, J. Pérez-Ramírez, I. Ioannou, Á. Galán-MartínEnergy Environ. Sci. 2023, 16, 113. DOI: 10.1039/D2EE01153K. Dataset: 10.5281/zenodo.8272032 (Zenodo).
  329. Transparent porous conductive substrates for gas-phase photoelectrochemical hydrogen production

    M. Caretti, E. Mensi, K. Sivula, E. Rideau, S. Nussbaum, R. Wells, L. Carbone, R.-A. Kessler, L. Lazouni, B. Goldman, J.-h. YumAdv. Mater. 2023, 35, 2208740. DOI: 10.1002/adma.202208740. Dataset: 10.5281/zenodo.8270024 (Zenodo).
  330. Ultrahigh mass activity Pt entities consisting of Pt single atoms, clusters, and nanoparticles for improved hydrogen evolution reaction

    S. Pollitt, S. Küspert, Z. Zeng, S.E. Balaghi, A. Fischer, M. Knäbbeler-Buß, J. Melke, N. Hug, H.E.M. Hussein, P. Hügenell, N. OrtliebSmall 2023, 19, 2205885. DOI: 10.1002/smll.202205885. Dataset: 10.5281/zenodo.8271889 (Zenodo).
  331. 2

    Unraveling radical and oxygenate routes in the oxidative dehydrogenation of propane over boron nitride

    Z. Zhang, J. Tian, P. Hemberger, J. Pérez-Ramírez, I. Surin, A. Bodi, X. WuJ. Am. Chem. Soc. 2023, 145, 7910. DOI: 10.1021/jacs.2c12970. Dataset: 10.16907/a8b0a8e7-8784-4789-847f-d21e52d4334c (PSI).
  332. X-ray and NMR structural data of ethynylbenziodoxolones (EBXs) reagents and their analogues

    S. Nicolai, F. Fadaei‐Tirani, R. Scopelliti, M.D. Wodrich, N.P. Ramirez, J. Waser, E. Le Du, D.P. HariHelv. Chim. Acta 2023, 106, e202200175. DOI: 10.1002/hlca.202200175.
  333. X‐Ray and NMR structural data of ethynylbenziodoxolones (EBXs) reagents and their analogues

    R. Scopelliti, N.P. Ramirez, M.D. Wodrich, F. Fadaei‐Tirani, E. Le Du, D.P. Hari, S. Nicolai, J. WaserHelv. Chim. Acta 2023, 106, e202200175. DOI: 10.1002/hlca.202200175.
  334. Zwitterionic halido cyclopentadienone iron complexes and their catalytic performance in hydrogenation reactions

    P. Chen, A. BütikoferInorg. Chem. 2023, 62, 4188. DOI: 10.1021/acs.inorgchem.2c04298. Dataset: 10.5281/zenodo.8099016 (Zenodo).
  335. 2022

  336. 1,3,2-Diazaphospholene-catalyzed reductive cyclizations of organohalides

    Ł. Woźniak, J. Klett, N. CramerAngew. Chem. Int. Ed. 2022, 61, e202202306. DOI: 10.1002/anie.202202306. Dataset: 10.1002/anie.202202306 (Zenodo).
  337. cell2mol: encoding chemistry to interpret crystallographic data

    C. Yuri, R. Laplaza, C. Corminboeuf, S. Velanpj Comput. Mater. 2022, 8, 188. DOI: 10.1038/s41524-022-00874-9. Dataset: 10.24435/materialscloud:g5-5r (Materials Cloud).
  338. A cation concentration gradient approach to tune the selectivity and activity of CO2 electroreduction

    X. Hu, W. Ren, A. Xu, K. ChanAngew. Chem. Int. Ed. 2022, 61, e202214173. DOI: 10.1002/anie.202214173. Dataset: 10.5281/zenodo.6511898 (Zenodo).
  339. A collaborative journey towards the late-stage functionalization of added-value chemicals using engineered halogenases

    C. Le Chapelain, N.J. Turner, J. Büchler, R.M. Buller, K. Schroer, O. Loiseleur, E. Hegarty, R. SnajdrovaHelv. Chim. Acta 2022, 106, e202200128. DOI: 10.1002/hlca.202200128.
  340. A concise review on recent developments of machine learning for the prediction of vibrational spectra

    S. Luber, R. HanJ. Phys. Chem. A 2022, 126, 801. DOI: 10.1021/acs.jpca.1c10417.
  341. A generalized machine learning framework to predict the space-time yield of methanol from thermocatalytic CO2 hydrogenation

    T. Pinheiro Araújo, J. Pérez-Ramírez, M. SuvarnaAppl. Catal. 2022, 315, 121530. DOI: 10.1016/j.apcatb.2022.121530. Dataset: 10.5281/zenodo.6541445 (Zenodo).
  342. A smile is all you need: predicting limiting activity coefficients from SMILES with natural language processing

    C. Winter, B. Winter, A. Bardow, J. SchillingFluid Phase Equilib. 2022, 1, 859. DOI: 10.1039/D2DD00058J. Dataset: 10.5281/zenodo.8271713 (Zenodo).
  343. Activity-based approach for selective molecular CO2 sensing

    J.-C. Leroux, P. Finkelstein, O. Green, M.A. Rivero-Crespo, M.K. Bogdos, B. Morandi, M. BurgerJ. Am. Chem. Soc. 2022, 144, 8717. DOI: 10.1021/jacs.2c02361. Dataset: 10.1021/jacs.2c02361 (Zenodo).
  344. Advancing MXene electrocatalysts for energy conversion reactions: surface, stoichiometry, and stability

    D.A. Kuznetsov, P.V. Kumar, R.P. Kulkarni, R. Amal, C.R. Müller, G. Sai Gautam, C. Tsounis, H. MasoodAngew. Chem. Int. Ed. 2022, 62, e202210828. DOI: 10.1002/anie.202210828.
  345. Algorithm-aided engineering of aliphatic halogenase WelO5* for the asymmetric late-stage functionalization of soraphens

    C. Le Chapelain, U.T. Bornscheuer, A. Lumbroso, J. Büchler, M. Voß, D. Patsch, O. Loiseleur, R.M. Buller, O. Allemann, S.H. MalcaNat. Commun. 2022, 13, 371. DOI: 10.1038/s41467-022-27999-1. Dataset: 10.5281/zenodo.5665271 (Zenodo).
  346. An artificial metalloenzyme based on a copper heteroscorpionate enables sp3 C–H functionalization via intramolecular carbene insertion

    T.R. Ward, R. Tachibana, A. Stein, C. Rumo, D. Häussinger, J. KlehrJ. Am. Chem. Soc. 2022, 144, 11676. DOI: 10.1021/jacs.2c03311. Dataset: 10.5281/zenodo.6793475 (Zenodo).
  347. 3

    Assessing the environmental benefit of palladium-based single-atom heterogeneous catalysts for Sonogashira coupling

    O.V. Safonova, S.C. D'Angelo, J. Pérez-Ramírez, D. Faust Akl, D. Poier, G. Guillén‐Gosálbez, V. Tulus, T. Pinheiro Araújo, S. MitchellGreen Chem. 2022, 24, 6879. DOI: 10.1039/D2GC01853E. Dataset: 10.5281/zenodo.6135989 (Zenodo).
  348. Assessing the environmental potential of hydrogen from waste polyethylene

    S. Cobo, C. Salah, G. Guillén‐GosálbezComput.-Aided Chem. Eng. 2022, 49, 1933. DOI: 10.1016/B978-0-323-85159-6.50322-5. Dataset: 10.5281/zenodo.8086271 (Zenodo).
  349. Assessing the persistence of chalcogen bonds in solution with neural network potentials

    F. Célerse, R. Laplaza, C. Corminboeuf, V. JuráskováJ. Chem. Phys. 2022, 156, 154112. DOI: 10.1063/5.0085153. Dataset: 10.24435/materialscloud:90-vd (Materials Cloud).
  350. Asymmetric cyclopropanation and epoxidation via a catalytically formed chiral auxiliary

    J. Waser, M. PuriņšAngew. Chem. Int. Ed. 2022, 61, e202113925. DOI: 10.1002/anie.202113925. Dataset: 10.5281/zenodo.5848181 (Zenodo).
  351. Automated image analysis for single-atom detection in catalytic materials by transmission electron microscopy

    D. Faust Akl, D. Garcia-Gasulla, Q.M. Ramasse, J. Pérez-Ramírez, S. Mitchell, F. Parés, S.M. Collins, N. López, D.M. KepaptsoglouJ. Am. Chem. Soc. 2022, 144, 8018. DOI: 10.1021/jacs.1c12466. Dataset: 10.5281/zenodo.5931544 (Zenodo).
  352. Autonomous reaction network exploration in homogeneous and heterogeneous catalysis

    M. Reiher, M. SteinerTop. Catal. 2022, 65, 6. DOI: 10.1007/s11244-021-01543-9. Dataset: 10.5281/zenodo.6340467 (Zenodo).
  353. Bayesian symbolic learning to build analytical correlations from rigorous process simulations: application to CO2 capture technologies

    G. Guillén‐Gosálbez, V. Negri, M. Sales-Pardo, D. Vázquez Vázquez, R. GuimeràACS Omega 2022, 7, 41147. DOI: 10.1021/acsomega.2c04736. Dataset: 10.5281/zenodo.8239352 (Zenodo).
  354. Biocatalysed synthesis planning using data-driven learning

    F. Paratore, Y.G. Nana Teukam, D. Probst, M. Manica, T. Laino, A. CastrogiovanniNat. Commun. 2022, 13, 964. DOI: 10.1038/s41467-022-28536-w. Dataset: 10.5281/zenodo.6361411 (Zenodo).
  355. 2

    Catalyst: a step forward for PVC manufacture from natural gas

    A. Ceruti, G. Zichittella, G. Guillén‐Gosálbez, J. Pérez-RamírezChem 2022, 8, 883. DOI: 10.1016/j.chempr.2022.02.012.
  356. 2

    Catalytic synergies in bimetallic Ru-Pt single-atom catalysts via speciation control

    F. Krumeich, A. Ruiz-Ferrando, A.J. Martín, S.K. Kaiser, N. López, V. Giulimondi, A.H. Clark, J. Pérez-RamírezAdv. Funct. Mater. 2022, 32, 2206513. DOI: 10.1002/adfm.202206513. Datasets: 10.19061/iochem-bd-1-247 (ioChem-BD), 10.5281/zenodo.6929058 (Zenodo).
  357. Chemical looping partial oxidation of methane: reducing carbon deposition through alloying

    C.R. Müller, F. DonatEnergy Fuels 2022, 36, 9780. DOI: 10.1021/acs.energyfuels.2c01345. Dataset: 10.1021/acs.energyfuels.2c01345 (Zenodo).
  358. Chlorination of arenes via the degradation of toxic chlorophenols

    M. Liu, P.J. Dyson, X. YangProc. Natl. Acad. Sci. U. S. A. 2022, 119, e2122425119. DOI: 10.1073/pnas.2122425119.
  359. Colloidal-ALD-grown hybrid shells nucleate via a ligand–precursor complex

    R. Buonsanti, A. Loiudice, A. Venkatesh, O. Segura Lecina, S. Björgvinsdóttir, L. Emsley, M.A. Hope, K. RossiJ. Am. Chem. Soc. 2022, 144, 3998. DOI: 10.1021/jacs.1c12538. Dataset: 10.5281/zenodo.6193067 (Zenodo).
  360. Constructing and interpreting volcano plots and activity maps to navigate homogeneous catalyst landscapes

    C. Corminboeuf, R. Laplaza, S. Das, M.D. WodrichNat. Protoc. 2022, 17, 2550. DOI: 10.1038/s41596-022-00726-2. Dataset: 10.5281/zenodo.8229210 (Zenodo).
  361. Controlled formation of dimers and spatially isolated atoms in bimetallic Au-Ru catalysts via carbon-host functionalization

    V. Giulimondi, A.J. Martín, S.K. Kaiser, A.H. Clark, S. BücheleSmall 2022, 18, 2200224. DOI: 10.1002/smll.202200224. Dataset: 10.5281/zenodo.6325285 (Zenodo).
  362. Copper phosphonate lamella intermediates control the shape of colloidal copper nanocrystals

    J. Vavra, D.C. Stoian, L. Castilla Amorós, R. Buonsanti, J.R. Pankhurst, V. Mantella, P.P. AlbertiniJ. Am. Chem. Soc. 2022, 144, 12261. DOI: 10.1021/jacs.2c03489. Dataset: 10.5281/zenodo.6362954 (Zenodo).
  363. Cracks as efficient tools to mitigate flooding in gas diffusion electrodes used for the electrochemical reduction of carbon dioxide

    Y.A. Hou, Y. Kong, M.d.J. Gálvez‐Vázquez, P. Broekmann, M. Liu, V. Kolivoška, S. Vesztergom, I. Montiel, H. HuSmall Methods 2022, 6, 2200369. DOI: 10.1002/smtd.202200369. Dataset: 10.5281/zenodo.6421142 (Zenodo).
  364. Cyclopentadienone iron complex-catalyzed hydrogenation of ketones: an operando spectrometric study using pressurized sample infusion-electrospray ionization-mass spectrometry

    A. Bütikofer, P. ChenOrganometallics 2022, 41, 2349. DOI: 10.1021/acs.organomet.2c00341. Dataset: 10.5281/zenodo.8099440 (Zenodo).
  365. Deciphering the structure of heterogeneous catalysts across scales using pair distribution function analysis

    C.R. Müller, P.M. AbdalaTrends Chem. 2022, 4, 807. DOI: 10.1016/j.trechm.2022.06.006.
  366. DeepCV: A deep learning framework for blind search of collective variables in expanded configurational space

    S. Luber, R. KetkaewJ. Chem. Inf. Model. 2022, 62, 6352. DOI: 10.1021/acs.jcim.2c00883. Dataset: 10.5281/zenodo.8141955 (Zenodo).
  367. Derivative voltammetry: a simple tool to probe reaction selectivity in photoelectrochemical cells

    K. Sivula, N. Plainpan, F. BoudoireSustainable Energy Fuels 2022, 6, 3926. DOI: 10.1039/D2SE00692H.
  368. Designing physics-based reaction representations

    R. Fabregat I De Aguilar-Amat, C. Corminboeuf, A. Fabrizio, P. van GerwenNeurIPS 2022, 3, 45005.
  369. 2

    Droplet-Based Microfluidics Platform for the Synthesis of Single-Atom Heterogeneous Catalysts

    D. Faust Akl, T. Moragues, J. Pérez-Ramírez, A. deMello, S. MitchellSmall Struct. 2022, 4, 2200284. DOI: 10.1002/sstr.202200284. Dataset: 10.5281/zenodo.7107186 (Zenodo).
  370. Economic and environmental barriers of CO2-based Fischer–Tropsch electro-diesel

    J.D. Medrano‐García, G. Guillén‐Gosálbez, M.A. CharalambousACS Sustain. Chem. Eng. 2022, 10, 11751. DOI: 10.1021/acssuschemeng.2c01983. Dataset: 10.5281/zenodo.8036937 (Zenodo).
  371. 2

    Effects of surface wettability on (001)-WO and (100)-WSe: a spin-polarized DFT-MD study

    S. Luber, R. Ketkaew, K. Sivula, F. CreazzoAppl. Surf. Sci. 2022, 601, 154203. DOI: 10.1016/j.apsusc.2022.154203. Dataset: 10.5281/zenodo.8143365 (Zenodo).
  372. Electronic regulation of nickel single atoms by confined nickel nanoparticles for energy-efficient CO2 electroreduction

    A. Schueler, A. Krammer, C. Jia, S.C. Smith, C. Zhao, Q. Sun, W. Ren, X. Tan, J. Qu, X. HuAngew. Chem. Int. Ed. 2022, 61, e202203335. DOI: 10.1002/anie.202203335. Dataset: 10.1002/anie.202203335 (Zenodo).
  373. Elucidating the transition between CO2 physisorption and chemisorption in 1,2,4-triazolate ionic liquids at a molecular level.

    P.J. Dyson, X. Yang, X. HuChem. Eng. J. 2022, 435, 134956. DOI: 10.1016/j.cej.2022.134956. Dataset: 10.5281/zenodo.6259193 (Zenodo).
  374. 4

    Elucidation of metal local environments in single-atom catalysts based on carbon nitrides

    C. Copéret, E. Willinger, S. Mitchell, C.R. Müller, S.M. Collins, S. Büchele, A. Ruiz-Ferrando, N. López, Z. Chen, O.V. Safonova, A. Yakimov, J. Pérez-Ramírez, D.M. Kepaptsoglou, Q.M. RamasseSmall 2022, 18, 2202080. DOI: 10.1002/smll.202202080.
  375. 3

    Elucidation of radical- and oxygenate-driven paths in zeolite-catalysed conversion of methanol and methyl chloride to hydrocarbons

    A. Bodi, G. Jeschke, A. Cesarini, S.P. Schmid, M. Agrachev, J. Pérez-Ramírez, G. Zichittella, Z. Pan, S. MitchellNat. Catal. 2022, 5, 605. DOI: 10.1038/s41929-022-00808-0. Dataset: 10.5281/zenodo.6547649 (Zenodo).
  376. Enantioselective tail-to-head terpene cyclizations by optically active hexameric resorcin[4]arene capsule derivatives

    D. Sokolova, G. PicciniAngew. Chem. Int. Ed. 2022, 61, e202203384. DOI: 10.1002/anie.202203384.
  377. Energy systems modeling and optimization for absolute environmental sustainability: current landscape and opportunities

    T. Weidner, G. Guillén‐Gosálbez, Á. Galán-Martín, M. RybergComput. Chem. Eng. 2022, 164, 107883. DOI: 10.1016/j.compchemeng.2022.107883.
  378. Enzymatic and microbial electrochemistry: approaches and methods

    S. Sahin, S. Webb, G. Bedendi, P. Maroni, M. Grattieri, L.D.d.M. Torquato, C. Cadoux, A. Kulkarni, R.D. MiltonACS Meas. Sci. Au 2022, 2, 517. DOI: 10.1021/acsmeasuresciau.2c00042.
  379. Enzyme engineering enables inversion of substrate stereopreference of the halogenase WelO5*

    E. Sager, R. Snajdrova, D. Schaub, M. Ligibel, S. Hüppi, T. Hayashi, R.M. Buller, K. Schroer, M. VoßChemCatChem 2022, 14, e202201115. DOI: 10.1002/cctc.202201115. Dataset: 10.2210/pdb8ACV/pdb (PDB).
  380. Evaluation of the potential use of e-fuels in the European aviation sector: a comprehensive economic and environmental assessment including externalities

    C. BunneSustainable Energy Fuels 2022, 6, 4749. DOI: 10.1039/D2SE00757F. Dataset: 10.5281/zenodo.8271785 (Zenodo).
  381. Evolving enzymatic electrochemistry with rare or unnatural amino acids

    S. Sahin, R.D. MiltonCurr. Opin. Electrochem. 2022, 35, 101102. DOI: 10.1016/j.coelec.2022.101102.
  382. Experimental design for linear functionals in reproducing kernel Hilbert spaces

    A. Krause, M. MutnýFluid Phase Equilib. 2022. DOI: 10.48550/arXiv.2205.13627.
  383. Exploring photoredox-catalyzed (re)functionalizations with core-modified benziodoxolones

    F. Le Vaillant, J. Waser, S.G.E. AmosHelv. Chim. Acta 2022, 106, e202200161. DOI: 10.1002/hlca.202200161. Dataset: 10.5281/zenodo.8178921 (Zenodo).
  384. 3

    Flame spray pyrolysis as a synthesis platform to assess metal promotion in In2O3‐catalyzed CO2 hydrogenation

    K.M. Engel, O.V. Safonova, D. Faust Akl, F. Krumeich, J. Pérez-Ramírez, J. Morales‐Vidal, T. Zou, R.N. Grass, R. García‐Muelas, T. Pinheiro Araújo, N. López, P.O. Willi, C. MondelliAdv. Energy Mater. 2022, 12, 2103707. DOI: 10.1002/aenm.202103707. Dataset: 10.19061/iochem-bd-1-219 (ioChem-BD).
  385. 4

    Flame-made ternary Pd-In2O3-ZrO2 catalyst with enhanced oxygen vacancy generation for CO2 hydrogenation to methanol

    O.V. Safonova, W.J. Stark, G. Jeschke, K.M. Engel, C. Mondelli, P.O. Willi, M. Agrachev, S. Mitchell, T. Pinheiro Araújo, J. Pérez-Ramírez, R.N. GrassNat. Commun. 2022, 13, 5610. DOI: 10.1038/s41467-022-33391-w. Dataset: 10.5281/zenodo.6511235 (Zenodo).
  386. From ethene to propene (ETP) on tailored silica–alumina supports with isolated Ni(II) sites: uncovering the importance of surface nickel aluminate sites and the carbon-pool mechanism

    C. Copéret, S.R. Docherty, C.R. Müller, A. Fedorov, P.M. Abdala, C. Zixuan, I.B. Moroz, A. Kierzkowska, P. FlorianCatal. Sci. Technol. 2022, 12, 5861. DOI: 10.1039/D2CY01272C. Dataset: 10.1039/d2cy01272c (Zenodo).
  387. From non-edible biomass to performance thermoplastics with sustainable end-of-life

    J.S. Luterbacher, L.P. MankerChimia 2022, 76, 864. DOI: 10.2533/chimia.2022.864.
  388. Generalizing performance equations in heterogeneous catalysis from hybrid data and statistical learning

    J. Pérez-Ramírez, A. Sabadell-Rendón, N. López, S. Pablo-García, S. Morandi, A.J. SaadunACS Catal. 2022, 12, 1581. DOI: 10.1021/acscatal.1c04345. Datasets: 10.19061/iochem-bd-1-228 (ioChem-BD), 10.19061/iochem-bd-1-152 (ioChem-BD), 10.19061/iochem-bd-1-150 (ioChem-BD).
  389. Genetic optimization of homogeneous catalysts

    R. Laplaza, S. Gallarati, C. CorminboeufChem.: Methods 2022, 2, e202100107. DOI: 10.1002/cmtd.202100107. Dataset: 10.24435/materialscloud:fz-sw (Materials Cloud).
  390. Grand challenges on accelerating discovery in catalysis

    A.C. Vaucher, T. LainoCatal. Today 2022, 387, 140. DOI: 10.1016/j.cattod.2021.10.001.
  391. Harvesting the fragment-based nature of bifunctional organocatalysts to enhance their activity

    C. Corminboeuf, R. Laplaza, S. GallaratiOrg. Chem. Front. 2022, 9, 4041. DOI: 10.1039/D2QO00550F. Dataset: 10.5281/zenodo.8027419 (Zenodo).
  392. Highly selective oxidative dehydrogenation of ethane to ethylene via chemical looping with oxygen uncoupling through structural engineering of the oxygen carrier

    G. Luongo, C.R. Müller, A. Landuyt, E. Willinger, F. Donat, A.H. BorkAdv. Energy Mater. 2022, 12, 2200405. DOI: 10.1002/aenm.202200405. Dataset: 10.1002/aenm.202200405 (Zenodo).
  393. Identifying descriptors for promoted rhodium-based catalysts for higher alcohol synthesis via machine learning

    M. Suvarna, P. Preikschas, J. Pérez-RamírezACS Catal. 2022, 12, 15373. DOI: 10.1021/acscatal.2c04349.
  394. Importance of substrate pore size and wetting behavior in gas diffusion electrodes for CO2 reduction

    F. Bernasconi, C. Battaglia, A. Senocrate, K. Kraft, D. Rentsch, M. Trottmann, D. BleinerACS Appl. Energy Mater. 2022, 5, 14504. DOI: 10.1021/acsaem.2c03054. Dataset: 10.5281/zenodo.8228241 (Zenodo).
  395. Improving the lifetime of hybrid CoPc@MWCNT catalysts for selective electrochemical CO2-to-CO conversion

    H. Hu, R. Erni, P. Broekmann, M.d.J. Gálvez‐Vázquez, C. Sun, N. Lüdi, M. Liu, Y.A. Hou, M. Liechti, A.V. Rudnev, Y. KongJ. Catal. 2022, 407, 198. DOI: 10.1016/j.jcat.2022.02.001. Dataset: 10.17632/9jvgfbcm2j.1 (Mendeley Data).
  396. Independent SE(3)-equivariant models for end-to-end rigid protein docking

    Y. Bian, X. Huang, A. Krause, C. Bunne, O.-E. Ganea, T. Jaakkola, R. BarzilayFluid Phase Equilib. 2022, 10. DOI: 10.48550/arXiv.2111.07786. Dataset: octavian-ganea/equidock_public (GitHub).
  397. Ketenes in the induction of the methanol-to-olefins process

    A. Bodi, P. Hemberger, X. Wu, X. Zhou, Z. Pan, Z. ZhangAngew. Chem. Int. Ed. 2022, 61, e202207777. DOI: 10.1002/anie.202207777. Dataset: 10.16907/4cb6c13f-9bd9-48be-8288-728b038f2b58 (PSI).
  398. Long-chain hydrocarbons by CO2 electroreduction using polarized nickel catalysts

    F. Dattila, J. Pérez-Ramírez, B.S. Yeo, S. Xi, Y. Zhou, A.J. MartínNat. Catal. 2022, 5, 545. DOI: 10.1038/s41929-022-00803-5. Datasets: 10.19061/iochem-bd-1-200 (ioChem-BD), 10.5281/zenodo.6331376 (Zenodo).
  399. 4

    Machine intelligence for chemical reaction space

    C. Corminboeuf, R. Laplaza, A. Krause, T. Laino, C. Bunne, A.C. Vaucher, P. SchwallerWiley Interdiscip. Rev.: Comput. Mol. Sci. 2022, 12, e1604. DOI: 10.1002/wcms.1604.
  400. Machine learning-assisted discovery of hidden states in expanded free energy space

    F. Creazzo, R. Ketkaew, S. LuberJ. Phys. Chem. Lett. 2022, 13, 1797. DOI: 10.1021/acs.jpclett.1c04004. Dataset: 10.5281/zenodo.8143400 (Zenodo).
  401. Mapping active site geometry to activity in immobilized frustrated Lewis pair catalysts

    R. Laplaza, J.T. Blaskovits, C. Corminboeuf, S. DasAngew. Chem. Int. Ed. 2022, 61, e202202727. DOI: 10.1002/anie.202202727. Dataset: 10.5281/zenodo.6451293 (Zenodo).
  402. 2

    Mapping catalyst-solvent interplay in competing carboamination/cyclopropanation reactions

    N. Cramer, C. Corminboeuf, Ł. Woźniak, S. Gallarati, M.D. Wodrich, M. ChangChem. - Eur. J. 2022, 28, e202200399. DOI: 10.1002/chem.202200399. Dataset: 10.5281/zenodo.8027571 (Zenodo).
  403. Mechanistic classification and benchmarking of polyolefin depolymerization over silica-alumina-based catalysts

    A. van Muyden, J.R. Carullo, W.-T. Lee, P.J. Dyson, F. Bobbink, M.D. MensiNat. Commun. 2022, 13, 4850. DOI: 10.1038/s41467-022-32563-y. Dataset: 10.5281/zenodo.8273259 (Zenodo).
  404. Mechanistic routes toward C3 products in copper-catalysed CO2 electroreduction

    B.S. Yeo, R. García‐Muelas, F.L.P. Veenstra, J. Pérez-Ramírez, N. López, L.R.L. Ting, A.J. Martín, F. Dattila, S.P. García CarrilloCatal. Sci. Technol. 2022, 12, 409. DOI: 10.1039/D1CY01423D. Dataset: 10.19061/iochem-bd-1-175 (ioChem-BD).
  405. Metric learning for kernel ridge regression: assessment of molecular similarity

    R. Fabregat I De Aguilar-Amat, M. Haeberle, C. Corminboeuf, P. van GerwenMach. Learn.: Sci. Technol. 2022, 3, 35015. DOI: 10.1088/2632-2153/ac8e4f. Dataset: 10.5281/zenodo.8229209 (Zenodo).
  406. 2

    Migrative carbofluorination of saturated amides enabled by Pd-based dyotropic rearrangement

    Q. Wang, S. Gallarati, H. Wu, J. Zhu, C. CorminboeufJ. Am. Chem. Soc. 2022, 144, 14047. DOI: 10.1021/jacs.2c06578. Dataset: 10.1021/jacs.2c06578 (Zenodo).
  407. 2

    Modular synthesis of benzocyclobutenes via Pd(II)-catalyzed oxidative [2+2] annulation of arylboronic acids with alkenes

    S. Gallarati, T. Fujii, Q. Wang, C. Corminboeuf, J. ZhuJ. Am. Chem. Soc. 2022, 144, 8920. DOI: 10.1021/jacs.2c03565.
  408. 2

    Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium

    W. Ni, J. Gu, X. Hu, W. Ren, S. Liu, S. HaussenerNat. Catal. 2022, 5, 268. DOI: 10.1038/s41929-022-00761-y. Dataset: 10.5281/zenodo.5751314 (Zenodo).
  409. Multi-scale representation learning on proteins

    A. Krause, C. Bunne, V.R. SomnathNeurIPS 2022. DOI: 10.48550/arxiv.2204.02337.
  410. Na-β-Al2O3 stabilized Fe2O3 oxygen carriers for chemical looping water splitting: correlating structure with redox stability

    T. Huthwelker, A. Armutlulu, N.S. Yüzbasi, P.M. AbdalaJ. Mater. Chem. A 2022, 10, 10692. DOI: 10.1039/d1ta10507h. Dataset: 10.1039/D1TA10507H (Zenodo).
  411. Navigating within the safe operating space with carbon capture on-board

    G. Guillén‐Gosálbez, M.A. Charalambous, J.D. Medrano‐García, V. NegriACS Sustain. Chem. Eng. 2022, 10, 17134. DOI: 10.1021/acssuschemeng.2c04627. Dataset: 10.5281/zenodo.8246816 (Zenodo).
  412. Nitrogenase loosens its belt to fix dinitrogen

    R.D. MiltonNat. Catal. 2022, 5, 361. DOI: 10.1038/s41929-022-00795-2.
  413. Novel Ni foam catalysts for sustainable nitrate to ammonia electroreduction

    P. Broekmann, A. Dutta, A. IarchukJ. Hazard. Mater. 2022, 439, 129504. DOI: 10.1016/j.jhazmat.2022.129504. Dataset: 10.5281/zenodo.6659731 (Zenodo).
  414. OSCAR: an extensive repository of chemically and functionally diverse organocatalysts

    C. Corminboeuf, S. Vela, R. Laplaza, A. Fabrizio, S. Gallarati, P. van GerwenChem. Sci. 2022, 13, 13782. DOI: 10.1039/D2SC04251G. Dataset: 10.24435/materialscloud:v4-sn (Materials Cloud).
  415. Onset and dynamics of avalanches in a rotating cylinder: From experimental data to a geometric model

    S. Pinzello, B.J. Leistner, C.R. Müller, E. Cano-Pleite, C. McLarenPhysical review. E 2022, 106, 054902. DOI: 10.1103/physreve.106.054902.
  416. Oxidase-type C-H/C-H coupling using an isoquinoline-derived organic photocatalyst

    X. Hu, L. Zhang, O.S. WengerAngew. Chem. Int. Ed. 2022, 61, e202202649. DOI: 10.1002/anie.202202649. Dataset: 10.5281/zenodo.6325397 (Zenodo).
  417. Palladium-catalyzed trans-hydroalkoxylation: counterintuitive use of an aryl iodide additive to promote C–H bond formation

    A. Das, L. Buzzetti, J. Waser, M. PuriņšACS Catal. 2022, 12, 7565. DOI: 10.1021/acscatal.2c01809. Dataset: 10.5281/zenodo.6634788 (Zenodo).
  418. Pd(II)-catalyzed aminoacetoxylation of alkenes via tether formation

    S. Nicolai, T. Rossolini, J. Waser, A. DasOrg. Lett. 2022, 24, 5068. DOI: 10.1021/acs.orglett.2c01838. Dataset: 10.5281/zenodo.6786359 (Zenodo).
  419. Pd-catalyzed direct deoxygenative arylation of non-π-extended benzyl alcohols with boronic acids via transient formation of non-innocent isoureas

    B. Morandi, M.A. Rivero-Crespo, L. Schlemper, G. Toupalas, G. ThomannACS Catal. 2022, 12, 8147. DOI: 10.1021/acscatal.2c01858. Dataset: 10.1021/acscatal.2c01858 (Zenodo).
  420. Pd-catalyzed functionalization of alkenes and alkynes using removable tethers

    A. DasTetrahedron 2022, 128, 133135. DOI: 10.1016/j.tet.2022.133135.
  421. 2

    Performance descriptors of nanostructured metal catalysts for acetylene hydrochlorination

    J. Pérez-Ramírez, F. Krumeich, A.H. Clark, N. López, V.A. Kondratenko, I. Surin, S.K. Kaiser, E. FakoNat. Nanotechnol. 2022, 17, 606. DOI: 10.1038/s41565-022-01105-4. Datasets: 10.19061/iochem-bd-1-222 (ioChem-BD), 10.19061/iochem-bd-1-204 (ioChem-BD).
  422. Photo-electrochemical conversion of CO2 under concentrated sunlight enables combination of high reaction rate and efficiency

    C. Janáky, M. Patel, S. Suter, E. Boutin, E. Kecsenovity, S. HaussenerAdv. Energy Mater. 2022, 12, 2200585. DOI: 10.1002/aenm.202200585.
  423. Photoionization reveals catalytic mechanisms

    P. Hemberger, J. Pérez-Ramírez, A. BodiNat. Catal. 2022, 5, 850. DOI: 10.1038/s41929-022-00847-7.
  424. Physics-based representations for machine learning properties of chemical reactions

    C. Corminboeuf, P. van Gerwen, M.D. Wodrich, A. FabrizioMach. Learn.: Sci. Technol. 2022, 3, 45005. DOI: 10.1088/2632-2153/ac8f1a. Dataset: 10.5281/zenodo.7274529 (Zenodo).
  425. Planetary boundaries analysis of Fischer-Tropsch Diesel for decarbonizing heavy-duty transport

    M.A. Charalambous, G. Guillén‐Gosálbez, J.D. Medrano‐GarcíaComput.-Aided Chem. Eng. 2022, 49, 1969. DOI: 10.1016/B978-0-323-85159-6.50328-6. Dataset: 10.5281/zenodo.8085800 (Zenodo).
  426. Porous organic polymers for CO2 capture, separation and conversion

    A. Coskun, K.S. Song, P.W. FritzChem. Soc. Rev. 2022, 51, 9831. DOI: 10.1039/D2CS00727D.
  427. 3

    Porous polyisothiocyanurates for selective palladium recovery and heterogeneous catalysis

    S.N. Talapaneni, A.H. Clark, K.S. Song, T. Ashirov, A. Coskun, A. Yakimov, M. NachtegaalChem 2022, 8, 2043. DOI: 10.1016/j.chempr.2022.05.009. Dataset: 10.5281/zenodo.6589973 (Zenodo).
  428. Post‐assembly modification of protein cages by Ubc9‐mediated lysine acylation

    J.W. Bode, M.D. Levasseur, R. Hofmann, S. Hehn, M. Thanaburakorn, D. Hilvert, T.G.W. EdwardsonChemBioChem 2022, 23, e202200332. DOI: 10.1002/cbic.202200332.
  429. Prospects of MgO-based sorbents for CO2 capture applications at high temperatures

    F. Donat, C.R. MüllerCurr. Opin. Green Sustainable Chem. 2022, 36, 100645. DOI: 10.1016/j.cogsc.2022.100645.
  430. 2

    Redispersion strategy for high-loading carbon-supported metal catalysts with controlled nuclearity

    V. Giulimondi, G. Jeschke, A.H. Clark, M. Agrachev, F. Krumeich, S. Mitchell, S.K. Kaiser, J. Pérez-RamírezJ. Mater. Chem. A 2022, 10, 5953. DOI: 10.1039/D1TA09238C. Dataset: 10.5281/zenodo.6325256 (Zenodo).
  431. Regionalized life cycle assessment of present and future lithium production for Li-ion batteries

    C. Oberschelp, S. PfisterResour., Conserv. Recycl. 2022, 187, 106611. DOI: 10.1016/j.resconrec.2022.106611. Dataset: 10.5281/zenodo.8228815 (Zenodo).
  432. SELFIES and the future of molecular string representations

    K. Rajan, B. Smit, A.D. White, R. Yu, A. Wang, A. Frei, F. Strieth-Kalthoff, A. Nigam, P. Schwaller, N. Carson, S. Barthel, S.M. Moosavi, G. Tom, A. Aspuru-Guzik, N.C. Frey, A. Young, J.M. Nápoles-Duarte, C. Sun, U. Schatzschneider, K.M. Jablonka, T. Gaudin, R.F. Lameiro, D. Lemm, P. Friederich, M. Krenn, R. Pollice, A.A. Gayle, M. Skreta, G. Falk von Rudorff, A. Lo, Q. AiPatterns 2022, 3, 100588. DOI: 10.1016/j.patter.2022.100588.
  433. Shaping copper nanocatalysts to steer selectivity in the electrochemical CO2 reduction reaction

    R. Buonsanti, K. RossiAcc. Chem. Res. 2022, 55, 629. DOI: 10.1021/acs.accounts.1c00673.
  434. Single-atom heterogeneous catalysts for sustainable organic synthesis

    J. Pérez-Ramírez, G. Giannakakis, S. MitchellTrends Chem. 2022, 4, 264. DOI: 10.1016/j.trechm.2022.01.008.
  435. Site-specific protein ubiquitylation using an engineered, chimeric E1 activating enzyme and E2 SUMO conjugating enzyme Ubc9

    J.W. Bode, G. Akimoto, A.P. FernandesACS Cent. Sci. 2022, 8, 275. DOI: 10.1021/acscentsci.1c01490. Dataset: 10.5281/zenodo.8074143 (Zenodo).
  436. Size-dependent structural alterations in Ag nanoparticles during CO2 electrolysis in a gas-fed zero-gap electrolyzer

    A.V. Rudnev, I. Montiel, Y.A. Hou, M. Liu, Y. Kong, P. Broekmann, H. HuChemElectroChem 2022, 9, e202200615. DOI: 10.1002/celc.202200615. Dataset: 10.5281/zenodo.6840454 (Zenodo).
  437. Social life cycle assessment of green methanol and benchmarking against conventional fossil methanol

    M. Martín-Gamboa, R. Calvo-Serrano, G. Guillén‐Gosálbez, Á. Galán-Martín, D. IribarrenSci. Total Environ. 2022, 824, 153840. DOI: 10.1016/j.scitotenv.2022.153840. Dataset: 10.5281/zenodo.8074911 (Zenodo).
  438. Solid-state NMR spectra of protons and quadrupolar nuclei at 28.2 T: resolving signatures of surface sites with fast magic angle spinning

    A.B. Barnes, S. Björgvinsdóttir, D. Gioffrè, C. Copéret, M.D. Korzyński, Z.J. Berkson, A. YakimovJACS Au 2022, 2, 2460. DOI: 10.1021/jacsau.2c00510. Dataset: 10.5281/zenodo.8315184 (Zenodo).
  439. Supervised training of conditional Monge maps

    M. Cuturi, C. Bunne, A. KrauseFluid Phase Equilib. 2022. DOI: 10.48550/arXiv.2206.14262.
  440. 2

    Surface intermediates in In-based ZrO2-supported catalysts for hydrogenation of CO2 to methanol

    C. Copéret, C.R. Müller, S.R. Docherty, A.I. Serykh, D. Mance, N.S. Bushkov, A. Fedorov, P.M. Abdala, A. TsoukalouJ. Phys. Chem. C 2022, 126, 1793. DOI: 10.1021/acs.jpcc.1c08814. Dataset: 10.5281/zenodo.6350245 (Zenodo).
  441. Sustainable polyesters via direct functionalization of lignocellulosic sugars

    M.A. Hedou, L.P. Manker, J.S. Luterbacher, A. Demongeot, H.-A. Klok, Y. Leterrier, T. Rambert, C. Rayroud, M. Vieli, I. Sulaeva, M.J. Jones, A. Potthast, G.R. Dick, V. MichaudNat. Chem. 2022, 14, 976. DOI: 10.1038/s41557-022-00974-5. Dataset: 10.5281/zenodo.6482769 (Zenodo).
  442. Taming the radical cation intermediate enabled one-step access to structurally diverse lignans

    C. Fung, J. Zhu, Q. WangNat. Commun. 2022, 13, 3481. DOI: 10.1038/s41467-022-31000-4. Dataset: 10.1038/s41467-022-31000-4 (Zenodo).
  443. 2

    The (not so) simple prediction of enantioselectivity – a pipeline for high-fidelity computations

    M.D. Wodrich, C. Corminboeuf, J.-G. Sobez, M. Reiher, R. LaplazaChem. Sci. 2022, 13, 6858. DOI: 10.1039/D2SC01714H. Dataset: 10.5281/zenodo.8026917 (Zenodo).
  444. The Schrödinger Bridge between Gaussian Measures has a Closed Form

    A. Krause, C. Bunne, M. Cuturi, Y.-P. HsiehFluid Phase Equilib. 2022. DOI: 10.48550/arXiv.2202.05722.
  445. The next frontier of environmental unknowns: substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs)

    A.M. Clark, Z. Tian, M. Fernandez Morron, L.R. McEwen, B.I. Escher, Z. Wang, A. Lai, E.L. SchymanskiEnviron. Sci. Technol. 2022, 56, 7448. DOI: 10.1021/acs.est.2c00321.
  446. The structural evolution of Mo2C and Mo2C/SiO2 under dry reforming of methane conditions: morphology and support effects

    M.G. Willinger, P.M. Abdala, C.R. Müller, A. Kurlov, D.C. Stoian, E. Kountoupi, E.B. Deeva, A. Fedorov, A. BaghizadehCatal. Sci. Technol. 2022, 12, 5620. DOI: 10.1039/D2CY00729K. Dataset: 10.5281/zenodo.8052890 (Zenodo).
  447. Tracking high-valent surface iron species in the oxygen evolution reaction on cobalt iron (oxy)hydroxides

    A. Moysiadou, S. Lee, Y.-C. Chu, X. Hu, H.M. ChenEnergy Environ. Sci. 2022, 15, 206. DOI: 10.1039/D1EE02999A. Dataset: 10.5281/zenodo.5723297 (Zenodo).
  448. Two-carbon ring expansion of cyclobutanols to cyclohexenones enabled by indole radical cation intermediate: development and application to a total synthesis of uleine

    Q. Wang, J. Zhu, A. LeclairACS Catal. 2022, 12, 1209. DOI: 10.1021/acscatal.1c05621.
  449. Unifying views on catalyst deactivation

    C. Mondelli, A.J. Martín, S. Mitchell, J. Pérez-Ramírez, S. JaydevNat. Catal. 2022, 5, 854. DOI: 10.1038/s41929-022-00842-y.
  450. Visualisation and quantification of flooding phenomena in gas diffusion electrodes used for electrochemical reduction: a combined EDX/ICP-MS approach

    S. Vesztergom, P. Broekmann, V. Kolivoška, Y. Kong, M. Liu, H. Hu, Y.A. HouJ. Catal. 2022, 408, 1. DOI: 10.1016/j.jcat.2022.02.014. Dataset: 10.5281/zenodo.6037503 (Zenodo).
  451. Well-defined copper-based nanocatalysts for selective electrochemical reduction of CO2 to C2 products

    K. Rossi, L. Zaza, R. BuonsantiACS Energy Lett. 2022, 7, 1284. DOI: 10.1021/acsenergylett.2c00035.
  452. 2021

  453. Asymmetric cation-olefin monocyclization by engineered squalene-hopene cyclases

    S. Vollenweider, U.T. Bornscheuer, N. Aeberli, R. Berweger, E. Eichhorn, D. Patsch, S. Hüppi, R.M. Buller, F. Voirol, M. Eichenberger, L. Hortencio, S. Dossenbach, F. FlachsmannAngew. Chem. Int. Ed. 2021, 60, 26080. DOI: 10.1002/anie.202108037.
  454. 2

    Atomic-scale structure and its impact on chemical properties of aluminum oxide layers prepared by atomic layer deposition on silica

    C. Leroy, D. Massiot, E. Willinger, C.R. Müller, F. Fayon, M. Kaushik, A. Lesage, A. Fedorov, C. Copéret, P. Florian, D. Gajan, C. ZixuanChem. Mater. 2021, 33, 3335. DOI: 10.1021/acs.chemmater.1c00516.
  455. Atomically precise control in the design of low-nuclearity supported metal catalysts

    S. Mitchell, J. Pérez-RamírezNat. Rev. Mater. 2021, 6, 969. DOI: 10.1038/s41578-021-00360-6.
  456. CO2 capture at medium to high temperature using solid oxide-based sorbents: fundamental aspects, mechanistic insights, and recent advances

    C.R. Müller, C.P. Grey, F. Donat, M.T. Dunstan, A.H. BorkChem. Rev. 2021, 121, 12681. DOI: 10.1021/acs.chemrev.1c00100.
  457. Carbon-supported bimetallic ruthenium-iridium catalysts for selective and stable hydrodebromination of dibromomethane

    H. Bonchev, J. Pérez-Ramírez, S. Mitchell, A.J. SaadunChemCatChem 2021, 14, e202101494. DOI: 10.1002/cctc.202101494.
  458. Chelation-assisted C-C bond activation of biphenylene by gold(I) halides

    J. Schörgenhumer, H. Beucher, C. Nevado, E. MerinoChem. Sci. 2021, 12, 15084. DOI: 10.1039/D1SC03814A.
  459. Cobalt(III)-catalyzed diastereo- and enantioselective three-component C–H functionalization

    N. Cramer, A.G. HerraizACS Catal. 2021, 11, 11938. DOI: 10.1021/acscatal.1c03153. Dataset: 10.1021/acscatal.1c03153 (Zenodo).
  460. Cobalt(III)-catalyzed enantioselective intermolecular carboamination by C-H functionalization

    N. Cramer, K. Ozols, S. OnoderaAngew. Chem. Int. Ed. 2021, 60, 655. DOI: 10.1002/anie.202011140. Dataset: 10.1002/anie.202011140 (Zenodo).
  461. Continuous hydrogenolysis of acetal-stabilized lignin in flow

    J. Behaghel de Bueren, S. Sun, W. Lan, Y.P. Du, F. Héroguel, J.S. LuterbacherGreen Chem. 2021, 23, 320. DOI: 10.1039/D0GC02928A.
  462. Copper nanocrystal morphology determines the viability of molecular surface functionalization in tuning electrocatalytic behavior in CO2 reduction

    P. Iyengar, J.R. Pankhurst, R. Buonsanti, V. OkatenkoInorg. Chem. 2021, 60, 6939. DOI: 10.1021/acs.inorgchem.1c00287.
  463. Cu(I)-catalyzed gem-aminoalkynylation of diazo compounds: synthesis of fluorinated propargylic amines

    N.P. Ramirez, J. Waser, G. PisellaJ. Org. Chem. 2021, 86, 10928. DOI: 10.1021/acs.joc.1c01423. Dataset: 10.5281/zenodo.5042202 (Zenodo).
  464. Deciphering metal–oxide and metal–metal interplay via surface organometallic chemistry: a case study with CO2 hydrogenation to methanol

    C. Copéret, S.R. DochertyJ. Am. Chem. Soc. 2021, 143, 6767. DOI: 10.1021/jacs.1c02555.
  465. Diaryl ether formation merging photoredox and nickel catalysis

    L. Liu, C. NevadoOrganometallics 2021, 40, 2188. DOI: 10.1021/acs.organomet.1c00018.
  466. Diformylxylose as a new polar aprotic solvent produced from renewable biomass

    G.R. Dick, J.S. Luterbacher, A.O. KomarovaGreen Chem. 2021, 23, 4790. DOI: 10.1039/D1GC00641J. Dataset: 10.5281/zenodo.8119767 (Zenodo).
  467. Direct photoexcitation of ethynylbenziodoxolones: an alternative to photocatalysis for alkynylation reactions

    J. Waser, S.G.E. Amos, F. Le Vaillant, D. CavalliAngew. Chem. Int. Ed. 2021, 60, 23827. DOI: 10.1002/anie.202110257. Dataset: 10.5281/zenodo.5205584 (Zenodo).
  468. Diversified sampling for batched Bayesian optimization with determinantal point processes

    E. Nava, M. Mutný, A. KrauseFluid Phase Equilib. 2021, 151, 7031. DOI: 10.48550/arXiv.2110.11665.
  469. Dual valorization of lignin as a versatile and renewable matrix for enzyme immobilization and (flow) bioprocess engineering

    J. Behaghel de Bueren, A.I. Benítez‐Mateos, F. Paradisi, S. Bertella, J.S. LuterbacherChemSusChem 2021, 14, 3198. DOI: 10.1002/cssc.202100926.
  470. Efficient pure exploration for combinatorial bandits with semi-bandit feedback

    J. Kirschner, A. Krause, M. Mutný, M. JourdanFluid Phase Equilib. 2021. DOI: 10.48550/arXiv.2101.08534.
  471. Elucidating the facet-dependent selectivity for CO2 electroreduction to ethanol of Cu–Ag tandem catalysts

    F. Calle-Vallejo, P. Iyengar, M.J. Kolb, R. Buonsanti, J.R. PankhurstACS Catal. 2021, 11, 4456. DOI: 10.1021/acscatal.1c00420.
  472. Elucidating the structure-dependent selectivity of CuZn towards methane and ethanol in CO2 electroreduction using tailored Cu/ZnO precatalysts

    R. Buonsanti, S.B. Varandili, Y.T. Guntern, J.R. Pankhurst, D.C. Stoian, N. López, J. Vavra, K. RossiChem. Sci. 2021, 12, 14484. DOI: 10.1039/D1SC04271H. Datasets: 10.24435/materialscloud:3r-gn (Materials Cloud), 10.24435/materialscloud:3r-gn (Materials Cloud).
  473. Ethane-based catalytic process for vinyl chloride manufacture

    J. Pérez-Ramírez, G. ZichittellaAngew. Chem. 2021, 133, 24291. DOI: 10.1002/ange.202105851.
  474. Expansive quantum mechanical exploration of chemical reaction paths

    M. Reiher, S. Grimmel, T. Weymuth, M. Steiner, A. BaiardiAcc. Chem. Res. 2021, 55, 35. DOI: 10.1021/acs.accounts.1c00472.
  475. Experimental data supported techno-economic assessment of the oxidative dehydrogenation of ethane through chemical looping with oxygen uncoupling

    F. Donat, C.R. Müller, M. Krödel, G. Luongo, C.-C. CormosRenewable Sustainable Energy Rev. 2021, 149, 111403. DOI: 10.1016/j.rser.2021.111403. Dataset: 10.1016/j.rser.2021.111403 (Zenodo).
  476. Exploiting the lability of metal halide perovskites for doping semiconductor nanocomposites

    J. Arbiol, M. Ibáñez, T. Kleinhanns, D.N. Dirin, Y. Liu, M. Calcabrini, A. Genç, S. Lee, Q.A. Akkerman, M.V. KovalenkoACS Energy Lett. 2021, 6, 581. DOI: 10.1021/acsenergylett.0c02448.
  477. Extraction of organic chemistry grammar from unsupervised learning of chemical reactions

    P. Schwaller, J.-L. Reymond, B. Hoover, T. Laino, H. StrobeltSci. Adv. 2021, 7, eabe4166. DOI: 10.1126/sciadv.abe4166.
  478. First steps toward sustainable circular uses of chemicals: advancing the assessment and management paradigm

    S. Hellweg, Z. WangACS Sustain. Chem. Eng. 2021, 9, 6939. DOI: 10.1021/acssuschemeng.1c00243.
  479. Guidelines for performing lignin-first biorefining

    K. Barta, J. Ralph, Y. Román-Leshkov, F. Wang, G.T. Beckham, R. Rinaldi, B.F. Sels, M.M. Abu-Omar, J.S. LuterbacherEnergy Environ. Sci. 2021, 14, 262. DOI: 10.1039/D0EE02870C.
  480. Hybrid 0D antimony halides as air‐stable luminophores for high‐spatial‐resolution remote thermography

    S. Yakunin, M.V. Kovalenko, V. Morad, S.C. Boehme, I. Shorubalko, M.J. Grotevent, B. Benin, Y. ShynkarenkoAdv. Mater. 2021, 33, 2007355. DOI: 10.1002/adma.202007355.
  481. Hydrogen dissociation sites on indium-based ZrO2-supported catalysts for hydrogenation of CO2 to methanol

    A. Kierzkowska, E. Willinger, P.M. Abdala, A. Fedorov, A.I. Serykh, A. TsoukalouCatal. Today 2021, 387, 38. DOI: 10.1016/j.cattod.2021.04.010. Dataset: 10.5281/zenodo.8152643 (Zenodo).
  482. Inferring experimental procedures from text-based representations of chemical reactions

    A.C. Vaucher, T. Laino, V.H. Nair, J. Geluykens, A. IulianoNat. Commun. 2021, 12, 2573. DOI: 10.1038/s41467-021-22951-1.
  483. Learning single-cell perturbation responses using neural optimal transport

    G. Gut, J. Sarabia del Castillo, L. Pelkmans, C. Bunne, S.G. Stark, A. Krause, G. Rätsch, K.-V. LehmannbioRxiv 2021. DOI: 10.1101/2021.12.15.472775.
  484. Ligand locking on quantum dot surfaces via a mild reactive surface treatment

    O. Segura Lecina, J.M. Luther, R. Buonsanti, A. Loiudice, A. BornetJ. Am. Chem. Soc. 2021, 143, 13418. DOI: 10.1021/jacs.1c06777.
  485. Mapping the space of chemical reactions using attention-based neural networks

    D. Probst, J.-L. Reymond, V.H. Nair, T. Laino, A.C. Vaucher, D. KreutterNat. Mach. Intell. 2021, 3, 144. DOI: 10.1038/s42256-020-00284-w. Dataset: rxnfp (GitHub).
  486. Methoxycyclization of 1,5-enynes by coinage metal catalysts: is gold always superior?

    M.D. Wodrich, C. CorminboeufHelv. Chim. Acta 2021, 104, e2100134. DOI: 10.1002/hlca.202100134. Dataset: 10.5281/zenodo.8028644 (Zenodo).
  487. Modulating chemoselectivity in a Fe(II)/α-ketoglutarate-dependent dioxygenase for the oxidative modification of a nonproteinogenic amino acid

    R. Frey, K. Schroer, E. Sager, M. Ligibel, F. Meyer, R.M. BullerACS Catal. 2021, 11, 6261. DOI: 10.1021/acscatal.1c00678.
  488. Monodisperse long-chain sulfobetaine-capped CsPbBr3 nanocrystals and their superfluorescent assemblies

    D. Naumenko, P.C. Sercel, M.V. Kovalenko, H. Andrusiv, F. Krieg, G. Rainò, M. Burian, R.F. Mahrt, T. Stöferle, H. Amenitsch, M.I. BodnarchukACS Cent. Sci. 2021, 7, 135. DOI: 10.1021/acscentsci.0c01153.
  489. Multi-scale representation learning on proteins

    A. Krause, V.R. Somnath, C. BunneFluid Phase Equilib. 2021. DOI: 10.48550/arXiv.2204.02337. Dataset: 10.5281/zenodo.8102783 (Zenodo).
  490. No-regret algorithms for capturing events in Poisson point processes

    A. Krause, M. MutnýProc. Mach. Learn. Res. 2021, 139, 7894.
  491. Operando laser scattering: probing the evolution of cocal pH changes on complex electrode architectures

    S. Vesztergom, S. Kitayaporn, V. Grozovski, M.d.J. Gálvez‐Vázquez, E. Karst, P. Broekmann, P. Moreno-GarcíaJ. Electrochem. Soc. 2021, 168, 72504. DOI: 10.1149/1945-7111/ac1212. Dataset: 10.5281/zenodo.8147183 (Zenodo).
  492. Peering into buried interfaces with X-rays and electrons to unveil MgCO3 formation during CO2 capture in molten salt-promoted MgO

    E. Willinger, P. Castro-Fernández, P.M. Abdala, A.H. Bork, C.R. Müller, M. Rekhtina, J. DrnecProc. Natl. Acad. Sci. U. S. A. 2021, 118, e2103971118. DOI: 10.1073/pnas.2103971118. Dataset: 10.5281/zenodo.7934294 (Zenodo).
  493. Perovskite quantum dots for super-resolution optical microscopy: where strong photoluminescence blinking matters

    F. Krieg, M.V. Kovalenko, G. Rainò, Y. Shynkarenko, L.G. FeldAdv. Opt. Mater. 2021, 9, 2100620. DOI: 10.1002/adom.202100620. Dataset: 10.5281/zenodo.4772469 (Zenodo).
  494. Photocatalytic decarboxylative coupling of aliphatic N-hydroxyphthalimide esters with polyfluoroaryl nucleophiles

    X. Yi, R. Mao, X. HuAngew. Chem. Int. Ed. 2021, 60, 23557. DOI: 10.1002/anie.202108465.
  495. Photoredox catalytic three-component amidoazidation of 1,3-dienes

    J. Zhu, W. Guo, D. Forster, Q. WangACS Catal. 2021, 11, 10871. DOI: 10.1021/acscatal.1c03545.
  496. 2

    Planetary boundaries analysis of low-carbon ammonia production routes

    G. Guillén‐Gosálbez, S.C. D'Angelo, J. Pérez-Ramírez, S. Cobo, A. Nabera, A.J. Martín, V. TulusACS Sustain. Chem. Eng. 2021, 9, 9740. DOI: 10.1021/acssuschemeng.1c01915. Dataset: 10.5281/zenodo.8074042 (Zenodo).
  497. 2

    Planetary metrics for the absolute environmental sustainability assessment of chemicals

    V. Tulus, J. Pérez-Ramírez, G. Guillén‐GosálbezGreen Chem. 2021, 23, 9881. DOI: 10.1039/D1GC02623B.
  498. Precursor nuclearity and ligand effects in atomically-dispersed heterogeneous iron catalysts for alkyne semi-hydrogenation

    N. López, J. Pérez-Ramírez, E. Fako, D. Faust Akl, R. Hauert, S. Mitchell, O.V. Safonova, A. Ruiz-FerrandoChemCatChem 2021, 13, 3247. DOI: 10.1002/cctc.202100235. Datasets: 10.5281/zenodo.8029087 (Zenodo), 10.19061/iochem-bd-1-197 (ioChem-BD).
  499. Prediction of chemical reaction yields using deep learning

    T. Laino, A.C. Vaucher, P. Schwaller, J.-L. ReymondMach. Learn.: Sci. Technol. 2021, 2, 15016. DOI: 10.1088/2632-2153/abc81d. Dataset: rxn_yields (GitHub).
  500. Preparation of recyclable and versatile porous poly(aryl thioether)s by reversible Pd-catalyzed C–S/C–S metathesis

    M.A. Rivero-Crespo, B. Morandi, G. ToupalasJ. Am. Chem. Soc. 2021, 143, 21331. DOI: 10.1021/jacs.1c09884. Dataset: 10.1021/jacs.1c09884 (Zenodo).
  501. Process design within planetary boundaries: application to CO2 based methanol production

    D. Vázquez Vázquez, G. Guillén‐GosálbezChem. Eng. Sci. 2021, 246, 116891. DOI: 10.1016/j.ces.2021.116891. Dataset: 10.5281/zenodo.8037077 (Zenodo).
  502. 2

    Process modelling and life cycle assessment coupled with experimental work to shape the future sustainable production of chemicals and fuels

    S.C. D'Angelo, I. Ioannou, J. Pérez-Ramírez, C. Pozo, G. Guillén‐Gosálbez, Á. Galán-MartínReact. Chem. Eng. 2021, 6, 1179. DOI: 10.1039/D0RE00451K.
  503. Proximal optimal transport modeling of population dynamics

    A. Krause, L. Meng-Papaxanthos, M. Cuturi, C. BunneFluid Phase Equilib. 2021, 151, 6511. DOI: 10.48550/arXiv.2106.06345.
  504. 2

    Quantification of redox sites during catalytic propane oxychlorination by operando EPR spectroscopy

    G. Jeschke, G. Zichittella, R. Tschaggelar, J. Pérez-RamírezAngew. Chem. Int. Ed. 2021, 60, 3596. DOI: 10.1002/anie.202013331.
  505. Quantifying photoinduced polaronic distortions in inorganic lead halide perovskite nanocrystals

    M. Chergui, J.M. Budarz, M. Puppin, J. Löffler, G. Doumy, G.F. Mancini, A.M. March, N. Colonna, S.C. Boehme, L.M.D. Leroy, G. Smolentsev, F. Krieg, A. Al Haddad, T.C. Rossi, D. Walko, M.V. Kovalenko, D. Kinschel, M.-F. Tu, Y. KumagaiJ. Am. Chem. Soc. 2021, 143, 9048. DOI: 10.1021/jacs.1c02403. Dataset: 10.5281/zenodo.4564629 (Zenodo).
  506. Rao-Blackwellizing the straight-through Gumbel-Softmax gradient estimator

    C.J. Maddison, M.B. Paulus, A. KrauseFluid Phase Equilib. 2021. DOI: 10.48550/arXiv.2010.04838.
  507. Re-programming and optimization of a L-proline cis-4-hydroxylase for the cis-3-halogenation of its native substrate

    T. Hayashi, R.M. Buller, E. Sager, J. Meierhofer, A. Papadopoulou, S.L. Schneider, F. MeyerChemCatChem 2021, 13, 3914. DOI: 10.1002/cctc.202100591.
  508. Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts

    S. Bhattacharjee, R. Laplaza, S. Gallarati, M.D. Wodrich, C. Corminboeuf, R. Fabregat I De Aguilar-AmatChem. Sci. 2021, 12, 6879. DOI: 10.1039/D1SC00482D. Dataset: 10.5281/zenodo.5054507 (Zenodo).
  509. Reduction in minimum fluidization velocity and minimum bubbling velocity in gas-solid fluidized beds due to vibration

    C. McLaren, C.R. Müller, C. BoycePowder Technol. 2021, 382, 566. DOI: 10.1016/j.powtec.2021.01.023.
  510. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries

    Z. Li, C. Su, J. Li, S. Xi, J. Lu, T. Sun, K. Harrath, H. Yang, D. Faust Akl, X. Zhao, X. Hai, D. Kong, H. Xu, J. Pérez-Ramírez, J. Li, Y. CuiNat. Nanotechnol. 2021, 17, 174. DOI: 10.1038/s41565-021-01022-y.
  511. Sensing Cox processes via posterior sampling and positive bases

    M. Mutný, A. KrauseFluid Phase Equilib. 2021, 151, 6968. DOI: 10.48550/arXiv.2110.11181.
  512. Single-atom-substituted Mo2CTx:Fe-layered carbide for selective oxygen reduction to hydrogen peroxide: tracking the evolution of the MXene phase

    D.A. Kuznetsov, P.M. Abdala, C. Zixuan, C.R. Müller, A. Fedorov, O.V. SafonovaJ. Am. Chem. Soc. 2021, 143, 5771. DOI: 10.1021/jacs.1c00504.
  513. Status and prospects of the decentralised valorisation of natural gas into energy and energy carriers

    G. Zichittella, J. Pérez-RamírezChem. Soc. Rev. 2021, 50, 2984. DOI: 10.1039/D0CS01506G.
  514. 2

    Structural insight into an atomic layer deposition (ALD) grown Al2O3 layer on Ni/SiO2: impact on catalytic activity and stability in dry reforming of methane

    C. Copéret, W.-C. Liao, P.M. Abdala, C.R. Müller, D. Hosseini, S.M. Kim, D.C. Stoian, C. Zixuan, A. ArmutluluCatal. Sci. Technol. 2021, 11, 7563. DOI: 10.1039/D1CY01149A. Dataset: 10.1039/D1CY01149A (Zenodo).
  515. Structure sensitivity of nitrogen-doped carbon-supported metal catalysts in dihalomethane hydrodehalogenation

    S. Büchele, J. Pérez-Ramírez, A. Ruiz-Ferrando, N. López, A.J. SaadunJ. Catal. 2021, 404, 291. DOI: 10.1016/j.jcat.2021.10.008. Dataset: 10.19061/iochem-bd-1-210 (ioChem-BD).
  516. Suppression of the hydrogen evolution reaction is the key: selective electrosynthesis of formate from CO2 over porous In55Cu45 catalysts

    K. Kiran, P. Broekmann, I. Montiel, A. Dutta, M. RahamanACS Appl. Mater. Interfaces 2021, 13, 35677. DOI: 10.1021/acsami.1c07829.
  517. 2

    Sustainability footprints of a renewable carbon transition for the petrochemical sector within planetary boundaries

    J. Pérez-Ramírez, V. Tulus, I. Díaz, C. Pozo, G. Guillén‐GosálbezOne Earth 2021, 4, 565. DOI: 10.1016/j.oneear.2021.04.001. Dataset: 10.5281/zenodo.4652040 (Zenodo).
  518. The capping agent is the key: structural alterations of Ag NPs during CO2 electrolysis probed in a zero-gap gas-flow configuration

    I. Martens, I. Montiel, J. Drnec, S. Vesztergom, M. Liu, P. Broekmann, M. Mirolo, H. Hu, C. Sun, Y. Kong, Y.A. Hou, N. Kovács, M.d.J. Gálvez‐VázquezJ. Catal. 2021, 404, 371. DOI: 10.1016/j.jcat.2021.10.016. Dataset: 10.5281/zenodo.6401829 (Zenodo).
  519. The role of hydrogen in heavy transport to operate within planetary boundaries

    A. Valente, M.A.J. Huijbregts, V. Tulus, G. Guillén‐Gosálbez, Á. Galán-MartínSustainable Energy Fuels 2021, 5, 4637. DOI: 10.1039/D1SE00790D. Dataset: 10.5281/zenodo.8082748 (Zenodo).
  520. Theory-guided enhancement of CO2 reduction to ethanol on Ag–Cu tandem catalysts via particle-size effects

    J.R. Pankhurst, P. Iyengar, R. Buonsanti, F. Calle-Vallejo, M.J. KolbACS Catal. 2021, 11, 13330. DOI: 10.1021/acscatal.1c03717.
  521. Tosyloxybenziodoxolone: a platform for performing the umpolung of alkynes in one-pot transformations

    J. Waser, J. BorrelOrg. Lett. 2021, 24, 142. DOI: 10.1021/acs.orglett.1c03771. Dataset: 10.5281/zenodo.5767223 (Zenodo).
  522. Toward reliable and accessible ammonia quantification in the electrocatalytic reduction of nitrogen

    F.L.P. Veenstra, A.J. Martín, J. Lüthi, R. Verel, J. Pérez-RamírezChem Catal. 2021, 1, 1505. DOI: 10.1016/j.checat.2021.10.002.
  523. Unassisted noise reduction of chemical reaction datasets

    A. Cardinale, J. Geluykens, A. Toniato, T. Laino, P. SchwallerNat. Mach. Intell. 2021, 3, 485. DOI: 10.1038/s42256-021-00319-w. Dataset: rxn4chemistry/OpenNMT-py/tree/noise_reduction (GitHub).
  524. Unwrap them first: operando potential-induced activation is required when using PVP-capped Ag nanocubes as catalysts of CO₂ electroreduction

    P. Moreno-García, S. Vesztergom, M.d.J. Gálvez‐Vázquez, Y.A. Hou, B. Wiley, P. Broekmann, H. Xu, H. HuChimia 2021, 75, 163. DOI: 10.2533/chimia.2021.163. Dataset: 10.5281/zenodo.8116584 (Zenodo).
  525. ZnO-promoted inverse ZrO2–Cu catalysts for CO2-based methanol synthesis under mild conditions

    C. Mondelli, T. Zou, F. Krumeich, J. Pérez-Ramírez, T. Pinheiro AraújoACS Sustain. Chem. Eng. 2021, 10, 81. DOI: 10.1021/acssuschemeng.1c04751. Dataset: 10.5281/zenodo.6319808 (Zenodo).
  526. 2020

  527. 3

    Activation of copper species on carbon nitride for enhanced activity in the arylation of amines

    M.A. Ortuño, S.M. Collins, S. Mitchell, P.A. Midgley, S. Xi, A. Ruiz-Ferrando, A. Borgna, E. Fako, A. Sabadell-Rendón, N. López, D. Klose, J. Pérez-Ramírez, E. Vorobyeva, V. Bösken, E.M. Carreira, D.M. KepaptsoglouACS Catal. 2020, 10, 11069. DOI: 10.1021/acscatal.0c03164. Dataset: 10.19061/iochem-bd-1-151 (ioChem-BD).
  528. CO2-free conversion of CH4 to syngas using chemical looping

    F. Donat, C.R. MüllerAppl. Catal. 2020, 278, 119328. DOI: 10.1016/j.apcatb.2020.119328. Dataset: 10.1016/j.apcatb.2020.119328 (Zenodo).
  529. Combined partial oxidation of methane to synthesis gas and production of hydrogen or carbon monoxide in a fluidized bed using lattice oxygen

    F. Donat, C.R. Müller, Y. XuEnergy Technol. 2020, 8, 1900655. DOI: 10.1002/ente.201900655. Dataset: 10.1002/ente.201900655 (Zenodo).
  530. Completion of partial reaction equations

    P. Schwaller, T. Laino, A.C. VaucherChemRxiv 2020. DOI: 10.26434/chemrxiv.13273310.v1. Dataset: rxn4chemistry/OpenNMT-py/tree/carbohydrate_transformer (GitHub).
  531. Data augmentation strategies to improve reaction yield predictions and estimate uncertainty

    T. Laino, P. Schwaller, A.C. Vaucher, J.-L. ReymondChemRxiv 2020. DOI: 10.26434/chemrxiv.13286741.v1.
  532. Data-powered augmented volcano plots for homogeneous catalysis

    M.D. Wodrich, B. Meyer, A. Fabrizio, C. CorminboeufChem. Sci. 2020, 11, 12070. DOI: 10.1039/D0SC04289G. Dataset: 10.5281/zenodo.5061786 (Zenodo).
  533. Enantioselective carboetherification/hydrogenation for the synthesis of amino alcohols via a catalytically formed chiral auxiliary

    P.D.G. Greenwood, J. Waser, M. Puriņš, L. BuzzettiJ. Am. Chem. Soc. 2020, 142, 17334. DOI: 10.1021/jacs.0c09177. Dataset: 10.5281/zenodo.4046256 (Zenodo).
  534. Gradient estimation with stochastic Softmax tricks

    C.J. Maddison, D. Choi, M.B. Paulus, A. Krause, D. TarlowNeurIPS 2020. DOI: 10.48550/arXiv.2006.08063.
  535. 2

    Hybridization of fossil and CO2-based routes for ethylene production using renewable energy

    S.C. D'Angelo, J. Pérez-Ramírez, I. Ioannou, G. Guillén‐Gosálbez, A.J. MartínChemSusChem 2020, 13, 6370. DOI: 10.1002/cssc.202001312. Dataset: 10.5281/zenodo.8082205 (Zenodo).
  536. Learning graph models for retrosynthesis prediction

    A. Krause, C.W. Coley, R. Barzilay, V.R. Somnath, C. BunneNeurIPS 2020. DOI: 10.48550/arxiv.2006.07038.
  537. Photocatalytic Umpolung of N- and O-substituted alkenes for the synthesis of 1,2-amino alcohols and diols

    J. Waser, S.G.E. Amos, S. NicolaiChem. Sci. 2020, 11, 11274. DOI: 10.1039/D0SC03655B. Dataset: 10.5281/zenodo.4043189 (Zenodo).
  538. Radical-cation cascade to aryltetralin cyclic ether lignans under visible-light photoredox catalysis

    Q. Wang, J.-C. Xiang, J. ZhuAngew. Chem. Int. Ed. 2020, 59, 21195. DOI: 10.1002/anie.202007548.
  539. Single-atom catalysts across the periodic table

    Z. Chen, S.K. Kaiser, D. Faust Akl, S. Mitchell, J. Pérez-RamírezChem. Rev. 2020, 120, 11703. DOI: 10.1021/acs.chemrev.0c00576.
  540. Solid-state NMR and NQR spectroscopy of lead-halide perovskite materials

    L. Piveteau, V. Morad, M.V. KovalenkoJ. Am. Chem. Soc. 2020, 142, 19413. DOI: 10.1021/jacs.0c07338.
  541. Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates

    T. Laino, G. Pesciullesi, J.-L. ReymondNat. Commun. 2020, 11, 4874. DOI: 10.1038/s41467-020-18671-7.
  542. Using nature’s blueprint to expand catalysis with Earth-abundant metals

    J. Klosin, C.H. Hendon, Y. Surendranath, C.W. Jones, R.M. Bullock, A.T. Radosevich, J.A. Keith, P.J. Chirik, S.D. Minteer, R.H. Morris, N.A. Strotman, T. Rauchfuss, A. Vojvodic, J.G. Chen, O.K. Farha, J.Y. Yang, L. GagliardiScience 2020, 369, eabc3183. DOI: 10.1126/science.abc3183.